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Abstract

We consider the problem of exploration-exploitation in communicating Markov Decision Processes.
We provide an anlysis of UCRL2 with Empirical Bernstein inequalities (UCRL2B). For any MDP
with S states, A actions, Γ ≤ S next states and diameter D, the regret of UCRL2B is bounded as
Õ(
√
DΓSAT ).

1 Introduction
Jaksch et al. (2010) introduced the reinforcement learning algorithm UCRL2 and proved a regret bound
of order Õ(DS

√
AT ) for any communicating MDP with S states, A actions and diameter D. UCRL2

used Hoeffding inequalities to build an uncertainty set around rewards and transitions. (Fruit et al.,
2018) exploited empirical Bernstein inequalities to prove a regret bound of Õ(D

√
ΓSAT ) where Γ :=

maxs,a Γ(s, a) ≤ S is the maximum number of possible next states. In this document, we show that we
can improve the analysis of UCRL2 with empirical Bernstein bound (UCRL2B) and we show a regret
bound of Õ(

√
DΓSAT ). This document is intended as a support to our tutorial at the 30th International

Conference on Algorithmic Learning Theory (ALT 2019). For a more detailed analysis, please refer
to (Fruit, 2019).

2 Preliminaries
We consider a communicating MDP (Puterman, 1994, Sec. 8.3) M = (S,A, p, r) with state space S and
action space A. Every state-action pair (s, a) is characterized by a reward distribution with mean r(s, a)
and support in [0, rmax], and a transition distribution p(·|s, a) over next states. We denote by S = |S|
and A = |A| the number of states and action, by Γ(s, a) = ‖p(·|s, a)‖0 the number of states reachable by
selecting action a in state s, and by Γ = maxs,a Γ(s, a) its maximum. A stationary Markov randomized
policy π : S → P (A) maps states to distributions over actions. The set of stationary randomized (resp.
deterministic) policies is denoted by ΠSR (resp. ΠSD). Any policy π ∈ ΠSR has an associated long-term
average reward (or gain) and a bias function defined as

gπ(s) := lim
T→+∞

Eπs
[

1

T

T∑
t=1

r(st, at)

]
and hπ(s) := C- lim

T→+∞
Eπs
[ T∑
t=1

(
r(st, at)− gπ(st)

)]
,

where Eπs denotes the expectation over trajectories generated starting from s1 = s with at ∼ π(st).
The bias hπ(s) measures the expected total difference between the reward and the stationary reward
in Cesaro-limit (denoted by C- lim). Accordingly, the difference of bias hπ(s) − hπ(s′) quantifies the
(dis-)advantage of starting in state s rather than s′. We denote by sp (hπ) := maxs h

π(s) −mins h
π(s)

the span of the bias function. In weakly communicating MDPs, any optimal policy π? ∈ arg maxπ g
π(s)

has constant gain, i.e., gπ
?

(s) = g? for all s ∈ S. Moreover, there exists a policy π? ∈ arg maxπ g
π(s) for

which (g?, h?) = (gπ
?

, hπ
?

) satisfy the optimality equation,

∀s ∈ S, h?(s) + g? = Lh?(s) := max
a∈A
{r(s, a) + p(·|s, a)>h?}, (1)

where L is the optimal Bellman operator. Finally, D = maxs 6=s′{τ(s→ s′)} denotes the diameter of M ,
where τ(s→ s′) is the minimal expected number of steps needed to reach s′ from s.
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Input: Confidence δ ∈]0, 1[, rmax, S, A
Initialization: Set t := 1 and observe s1 and for any (s, a, s′) ∈ S × A × S: N1(s, a) = 0, p̂1(s′|s, a) = 0,
r̂1(s, a) = 0, σ̂2

p,1(s′|s, a) = 0, σ̂2
r,1(s, a) = 0

For episodes k = 1, 2, ... do
1. Set tk ← t and episode counters νk(s, a)← 0

2. Compute the upper-confidence bounds (Eq. 5 and 6) and the extended MDPMk as in Eq. 2
3. Compute an rmax/tk-approximation πk of Eq. 7: (gk, hk, πk) = EV I(Lkα,Gkα, rmax

tk
, 0, s1)

4. Sample action at ∼ πk(·|st)
5. While tk = t or νk(st, at) ≤ max{1, Nk(st, at)} do

(a) Execute at, obtain reward rt, and observe st+1

(b) Sample action at+1 ∼ πk(·|st+1)

(c) Set νk(st, at)← νk(st, at) + 1 and set t← t+ 1

6. Set Nk+1(s, a)← Nk(s, a) + νk(s, a)

7. Update statistics (i.e., p̂k+1, r̂k+1, σ̂
2
p,k+1 and σ̂2

r,k+1)

Figure 1: UCRL2B algorithm.

Learning Problem. Let M? be the true MDP. We consider the learning problem where S, A and
rmax are known, while rewards r and dynamics p are unknown and need to be estimated on-line. We
evaluate the performance of a learning algorithm A after T time steps by its cumulative regret ∆(A, T ) =∑T
t=1(g? − rt(st, at)).

3 UCRL2B
UCRL2B is a variant of UCRL2 (Jaksch et al., 2010) that construct confidence intervals based on the
empirical Bernstein inequality (Audibert et al., 2007) rather than Hoeffding’s inequality. As UCRL2,
UCRL2B proceeds through episodes k = 1, 2 . . .. At the beginning of each episode k, UCRL computes a
set of plausible MDPs defined as

Mk =

{
M = 〈S,A, r̃, p̃〉 : r̃(s, a) ∈ Bkr (s, a), p̃(s′|s, a) ∈ Bkp (s, a, s′),

∑
s′

p̃(s′|s, a) = 1

}
, (2)

where Bkr and Bkp are high-probability confidence intervals on the rewards and transition probabilities of
the true MDP M?, which guarantees that (see App. B.2)

P (∃k ≥ 1, s.t. M? 6∈ Mk) ≤ δ

3
.

As mentioned, we use confidence intervals constructed using empirical Bernstein’s inequality (Audibert
et al., 2009, Thm. 1)

βsas
′

p,k := 2

√
σ̂2
p,k(s′|s, a)

N+
k (s, a)

ln

(
6SAN+

k (s, a)

δ

)
+

6 ln
(

6SAN+
k (s,a)

δ

)
N+
k (s, a)

(3)

βsar,k := 2

√
σ̂2
r,k(s, a)

N+
k (s, a)

ln

(
6SAN+

k (s, a)

δ

)
+

6rmax ln
(

6SAN+
k (s,a)

δ

)
N+
k (s, a)

(4)

where Nk(s, a) is the number of visits in (s, a) before episode k, N+
k (s, a) = max{1, Nk(s, a)}, σ̂2

p,k and
σ̂2
r,k are the population variance of transition and reward function at episode k. We define by r̂k and p̂k

the empirical average of rewards and transitions:

r̂k(s, a) :=
1

Nk(s, a)

tk−1∑
t=1

1 {st, at = s, a} · rt and p̂k(s′|s, a) :=
1

Nk(s, a)

tk−1∑
t=1

1 {st, at, st+1 = s, a, s′}
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where tk is the starting time of episode k The estimated transition probability p̂k(s′|s, a) correspond to
the sample mean of i.i.d. Bernouilli r.v. with mean p(s′|s, a) and therefore the population variance can
be easily computed as σ̂2

p,k(s′|s, a) := p̂k(s′|s, a) (1− p̂k(s′|s, a)). The population variance of the reward
can be computed recursively at the end of every episode:

σ̂2
r,k+1(s, a) :=

1

N+
k+1(s, a)

(
k∑
l=1

Sl(s, a)

)
− (r̂k+1(s, a))

2

=
Sk(s, a)

N+
k+1(s, a)

+
Nk(s, a)

N+
k+1(s, a)

(
σ̂2
r,k(s, a) + (r̂k(s, a))

2
)
− (r̂k+1(s, a))

2
.

where Sk(s, a) :=
∑tk−1
t=1 1 {st, at = s, a} · r2

t . The extended MDPMk is defined by the compact sets

Bkp (s, a, s′) :=
[
p̂k(s′|s, a)− βsas

′

p,k , p̂k(s′|s, a) + βsas
′

p,k

]
∩
[
0, 1
]

(5)

Bkr (s, a) :=
[
r̂k(s, a)− βsar,k, r̂k(s, a) + βsar,k

]
∩
[
0, rmax

]
(6)

As UCRL2, UCRL2B executes a policy πk which is an approximate solution to the following optimization
problem:

g?k := sup
M ′∈Mk

{
max
π∈ΠSD

gπM ′

}
= sup
M ′∈Mk

g?M ′ . (7)

Since M? ∈ Mk w.h.p., it holds that g?k ≥ g?M? . An approximated solution can be computed using
Extended Value Iteration (EVI) (Jaksch et al., 2010). For technical reasons, we do not apply EVI
directly toMk but toMk

α, where α is the coefficient of the aperiodicity transformation. EVI iteratively
applies the following extended aperiodic optimal Bellman operator Lkα:

Lkαv(s) := max
a∈As

{
max

r∈Br(s,a)
{r}+ α · max

p∈Bk
p (s,a)

{pᵀv}

}
+ (1− α) · v(s). (8)

where Bkp (s, a) :=
{
p ∈ ∆S : p(s′) ∈ Bkp (s, a, s′), ∀s′ ∈ S

}
and ∆S is the S-dimensional simplex. We

arbitrarily set α = 0.9. We recall that, by properties of the aperiodicity transformation, the optimal
gains of Mk

α and Mk are equal (denoted by g?k). If we ran EVI (see Alg. 2) on Mk
α with accuracy

εk = rmax/tk, we have that

|gk − g?k| ≤ εk/2 :=
rmax

2tk
(9)

and ‖Lkαhk − hk − gke‖∞ ≤ εk :=
rmax

tk
. (10)

where (gk, hk, πk) = EV I(Lkα,Gkα, rmax

tk
, 0, s1).1 We denote by rk and pk the optimistic reward and tran-

sitions at episode k.

Regret Bound. We can now provide the improved regret bound for UCRL2B

Theorem 1. There exists a numerical constant β > 0 such that for any communicating MDP, with
probability at least 1− δ, it holds that for all initial state distributions µ1 ∈ ∆S and for all time
horizons T > 1

∆(UCRL2B, T ) ≤ β · rmax

√√√√D

(∑
s,a

Γ(s, a)

)
T ln

(
T

δ

)
ln (T )

+ β · rmaxD
2S2A ln

(
T

δ

)
ln (T )

(12)

1The extended greedy operator is defined as

∀s ∈ S, ∀v ∈ RS , Gkv(s) ∈ arg max
a∈As

{
max

r∈Bk
r (s,a)

r + max
p∈Bk

p (s,a)
pᵀv

}
. (11)
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Input: Bellman operator L : RS 7→ RS , greedy policy operator G : RS 7→ DMR, accuracy ε ∈]0, rmax[, initial
vector v0 ∈ RS , arbitrary reference state s ∈ S
Initialization: n = 0, v1 = Lv0
While sp (vn+1 − vn) > ε do
1. Increment n← n+ 1

2. Shift vn ← vn − vn(s)e

3. (vn+1, dn) := (Lvn, Gvn)

Set g := 1
2

(
max{vn+1 − vn}+ min{vn+1 − vn}

)
, h := vn and π := (dn)∞

Return gain g, bias h, policy π

Figure 2: (Relative) Value Iteration.

Jaksch et al. (2010) showed that up to a multiplicative numerical constant, the regret of UCRL2 is
bounded by rmaxDS

√
AT ln (T/δ). After noticing that

∑
s,a Γ(s, a) ≤ ΓSA we can simplify the bound

in (12) as
β · rmax

√
DΓSAT ln (T/δ) + β · rmaxD

2S2A ln (T/δ) ln (T )

4 Improved regret analysis for UCRL2B

We now report the standard regret decomposition (e.g., Fruit et al., 2018). The regret after T time steps
is defined as ∆(UCRL2B, T ) =

∑T
t=1

(
g? − rt

)
. To begin with, we replace rt by its expected value con-

ditioned on the current state st using a martingale argument. Let’s denote by νk(s) :=
∑
a∈As

νk(s, a) the

total number of visits in state s during episode k. Defining ∆k :=
∑
s∈S νk(s)

(
g? −

∑
a∈Ast

πk(a|s)r(s, a)
)

the pseudo-regret of episode k, it holds with probability at least 1− δ
6 that for all T ≥ 1:

R(T,UCRL2B) ≤
kT∑
k=1

∑
s

νk(s)

(
g?M? −

∑
a

πk(s, a)r(s, a)

)
+ 2rmax

√
T ln

(
5T

δ

)

=

kT∑
k=1

∆k + 2rmax

√
T ln

(
5T

δ

)
where kT = sup{k ≥ 1 : t ≥ tk}. By using optimism and the Bellman equation, we further decompose
∆k as (see e.g., Fruit et al., 2018; Fruit, 2019, for more details)

∆k ≤ ∆p
k + ∆r

k +
3εk
2

∑
s∈S

νk(s)

with

∆p
k = α

∑
s,a,s′

νk(s)πk(s, a)
(
pk(s′|s, a)− p(s′|s, a)

)
hk(s′)︸ ︷︷ ︸

:=∆p1
k

(13)

+ α
∑
s

νk(s)

∑
a,s′

πk(s, a)p(s′|s, a)hk(s′)− hk(s)


︸ ︷︷ ︸

:=∆p2
k

where α ∈]0, 1] is the coefficient of the aperiodicity transformation applied to extended MDP Mk (in
most cases, this coefficient can be taken equal to 1 but we include it for the sake of generality) and pk is
the optimistic kernel at episode k. We also consider the general case where the optimistic policy πk can
be stochastic (in most cases this is not necessary).
We define the event EC =

{
∃T > 0,∃k > 0, s.t. M? /∈Mk

}
. We recall that the probability of this event

is small, see App. B.2:

P(EC) ≤ δ

3
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4.1 From D to
√
D: Variance Reduction Method

We will now prove Thm. 1. In order to improve the dependency of the regret bound in D (i.e., replace
D by

√
D), we refine our analysis with three key improvements:

1. We leverage on Freedman’s inequality (Freedman, 1975) instead of Azuma’s inequality to bound the
MDS. We recall this inequality in Prop. 2 below.

2. We use a tighter bound than Hölder’s inequality to upper-bound the sum
∑kT
k=1 ∆p3

k .

3. We shift the optimistic bias hkt by a different constant at every time step t ≥ 1 rather than only at
every episode k ≥ 1. More precisely, the optimistic bias is shifted by a different constant for every
episode k ≥ 1 and for every visited state s ∈ S.

To the best of our knowledge, Thm. 1 and its proof are new although it is largely inspired by what is
often referred to as “variance reduction methods” in the literature (Munos and Moore, 1999; Lattimore
and Hutter, 2012, 2014; Azar et al., 2017). Similar techniques are used by (Azar et al., 2017) to achieve
a similar bound but in the finite horizon setting. This approach is also related to (Talebi and Maillard,
2018) and (Maillard et al., 2014) (in the latter, the variance is called the distribution-norm instead of the
variance).

Proposition 2 (Freedman’s inequality). Let (Xn,Fn)n∈N be an MDS such that |Xn| ≤ a a.s. for all
n ∈ N. Then for all δ ∈]0, 1[,

P

∀n ≥ 1,

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ 2

√√√√( n∑
i=1

V
(
Xi

∣∣Fi−1

))
· ln
(

4n

δ

)
+ 4a ln

(
4n

δ

) ≥ 1− δ

For any vector u ∈ RS , we slightly abuse notation and write u2 := u ◦ u the Hadamard product of u with
itself. For any probability distribution p over states S and any vector u ∈ RS we define

Vp (u) := pᵀu2 − (pᵀu)2 = EX∼p[u(X)2]−
(
EX∼p[u(X)]

)2
the “variance” of u with respect to p. For the sake of clarity we introduce new notations for the transition
probabilities: pk(s′|s) :=

∑
a∈As

πk(s, a)pk(s′|s, a), pk(s′|s) :=
∑
a∈As

πk(s, a)p(s′|s, a) and p̂k(s′|s) :=∑
a∈As

πk(s, a)p̂k(s′|s, a), for every s, s′ ∈ S and every k ≥ 1.
We start with a new bound relating ∆p1

k . We define ∆p3
k := α

∑
s,a,s′ νk(s, a) (pk(s′|s, a)− p(s′|s, a))hk(s′).

Lemma 3. Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,

kT∑
k=1

∆p1
k ≤

kT∑
k=1

∆p3
k + 4rmaxD ln

(
24T

δ

)

+ 2

√
S ln

(
24T

δ

)
√√√√ T∑

t=1

Vpkt (·|st) (αhkt) +

√√√√ T∑
t=1

Vpkt
(·|st) (αhkt)

 (14)

Proof. We use a martingale argument and Prop. 2 (Fruit, 2019, see).

We refine the upper-bound of ∆p3
k derived by Jaksch et al. (2010). Instead of bounding the scalar prod-

uct (pk(·|s, a)− p(·|s, a))ᵀwk by ‖pk(·|s, a)− p(·|s, a)‖ᵀ1‖wk‖∞ using Hölder’s inequality, we bound it by∑
s′ |pk(s′|s, a)−p(s′|s, a)|·|wk(s′)| using the triangle inequality. Since

∑
a,s′ pk(s′|s, a) =

∑
a,s′ p(s

′|s, a) =
1 we can shift hk by an arbitrary scalar λsk ∈ R for all k ≥ 1 and all s ∈ S, i.e., wsk := hk +λske. Unlike in
UCRL2, we choose a state-dependent shift, namely λsk := −

∑
a,s′ p̂k(s′|s, a)πk(s, a)hk(s′) = −p̂k(·|s)ᵀhk.

It is easy to see that sp (wsk) = sp (hk) and ‖wsk‖∞ ≤ sp (hk) implying that under event E, ‖wsk‖∞ ≤
(rmaxD)/α.
Using the triangle inequality and the fact that pk(s, a) ∈ Bkp (s, a) by construction and p(s, a) ∈ Bkp (s, a)
under event E:∣∣pk(s′|s, a)− p(s′|s, a)

∣∣ ≤ ∣∣pk(s′|s, a)− p̂k(s′|s, a)
∣∣+
∣∣p̂k(s′|s, a)− p(s′|s, a)

∣∣ ≤ 2βsas
′

p,k
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As a result we can write:

∆p3
k ≤ α

kT∑
k=1

∑
s,a,s′

νk(s, a)
∣∣∣pk(s′|s, a)− p(s′|s, a)

∣∣∣ · ∣∣wsk(s′)
∣∣

≤ 2α

kT∑
k=1

∑
s,a

νk(s, a)
∑
s′

βsas
′

p,k ·
∣∣wsk(s′)

∣∣
= 4α

kT∑
k=1

∑
s,a

νk(s, a)

[√
ln (6SAT/δ)

N+
k (s, a)

∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wsk(s′)2

+
3 ln (6SAT/δ)

N+
k (s, a)

∑
s′

∣∣wsak (s′)
∣∣︸ ︷︷ ︸

≤(rmaxD)/α

]

We denote by Vk(s, a) := α2
∑
s′ p̂k(s′|s, a)wsk(s′)2. We can prove the following inequality:

Lemma 4. It holds almost surely that for all k ≥ 1 and for all (s, a, s′) ∈ S ×A× S:

α
∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wsk(s′)2 ≤

√
Vk(s, a) · (Γ(s, a)− 1) (15)

Proof. Define Sk(s, a) = {s′ ∈ S : p̂k(s′|s, a) > 0}. Then, using Cauchy-Schartz inequality we have∑
s′∈S

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wk(s′)2 =

∑
s′∈Sk(s,a)

√
p̂k(s′|s, a)(1− p̂k(s′|s, a))wk(s′)2

≤

√√√√( ∑
s′∈Sk(s,a)

1− p̂k(s′|s, a)

)
·

( ∑
s′∈Sk(s,a)

p̂k(s′|s, a)wk(s′)2

)

=

√√√√(Γk(s, a)− 1

)
·

(∑
s′∈S

p̂k(s′|s, a)wk(s′)2

)
≤
√

Γ(s, a)
∑
s′∈S

p̂k(s′|s, a)wk(s′)2

By definition, for all s′ ∈ S, wk(s′) = hk(s′)− EX∼p̂k(·|s,a)[hk(X)] and so∑
s′∈S

p̂k(s′|s, a)wk(s′)2 = Vp̂k(·|s,a) (hk)

As a consequence of Lem. 4,

kT∑
k=1

∆p3
k ≤ 4

kT∑
k=1

∑
s,a

νk(s, a)

[√
Vk(s, a)

Γ(s, a)

N+
k (s, a)

ln

(
6SAT

δ

)
+

3rmaxDS

N+
k (s, a)

ln

(
6SAT

δ

)]

= 4

kT∑
k=1

tk+1−1∑
t=tk

[√
Vk(st, at)

Γ(st, at)

N+
k (st, at)

ln

(
6SAT

δ

)
+

3rmaxDS

N+
k (st, at)

ln

(
6SAT

δ

)]

Applying Cauchy-Schwartz gives

kT∑
k=1

tk+1−1∑
t=tk

√
Vk(st, at)

√
Γ(st, at)

N+
k (st, at)

≤

√√√√ kT∑
k=1

tk+1−1∑
t=tk

Γ(st, at)

N+
k (st, at)

kT∑
k=1

tk+1−1∑
t=tk

Vk(st, at)

=

√√√√ kT∑
k=1

∑
s,a

Γ(s, a)νk(s, a)

N+
k (s, a)

T∑
t=1

Vkt(st, at)
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Using Lem. 8, Jensen’s inequality and the fact that N+
kT +1(s, a) ≤ T , we can bound the first sum

∑
s,a

kT∑
k=1

Γ(s, a)νk(s, a)

N+
k (s, a)

≤ 2
∑
s,a

Γ(s, a)
(
1 + ln

(
N+
kT +1(s, a)

))
≤ 2

(
1 + ln

(∑
s,a Γ(s, a)N+

kT +1(s, a)∑
s,a Γ(s, a)

))∑
s,a

Γ(s, a)

≤ 2(1 + ln (T ))
∑
s,a

Γ(s, a)

To bound the second sum
∑T
t=1 Vkt(st, at), we rely on the following Lemma:

Lemma 5. Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,

T∑
t=1

Vkt(st, at) ≤
T∑
t=1

Vp̂kt (·|st) (αhkt) + (rmaxD)2

√
2T ln

(
T

δ

)
(16)

Proof. We notice that for all k ≥ 1 and s ∈ S,
∑
a πk(s, a)Vk(s, a) = Vp̂k(·|s) (αhk). The concentration

inequality then follows from a martingale argument and Azuma’s inequality.

From Lem. 5 it follows that

kT∑
k=1

∆p3
k ≤4

√√√√2
(

1 + ln(T )
)

ln

(
6SAT

δ

)(∑
s,a

Γ(s, a)

)(
(rmaxD)2

√
2T ln

(
T

δ

)
+

T∑
t=1

Vp̂kt (·|st) (αhkt)

)

+ 24rmaxDS
2A ln

(
6SAT

δ

)
(1 + ln(T )) (17)

It now remains to bound
∑kT
k=1 ∆p2

k . As shown by (Jaksch et al., 2010; Fruit et al., 2018) using telescopic
sum argument:

∑kT
k=1 ∆p2

k ≤
∑kT
k=1 ∆p4

k + (rmaxD)kT where

∆p4
k = α

tk+1−1∑
t=tk

∑
a,s′

πk(st, a)p(s′|s, a)wk(s′)− wk(st+1)


We bound

∑kT
k=1 ∆p4

k using Freedman’s inequality instead of Azuma’s.

Lemma 6. Under event E, with probability at least 1− δ
6 :

∀T ≥ 1,

kT∑
k=1

∆p4
k ≤ 2

√√√√( T∑
t=1

Vpkt
(·|st) (αhk)

)
· ln
(

24T

δ

)
+ 4rmaxD ln

(
24T

δ

)
(18)

Proof. We use a martingale argument and Prop. 2 (see App. B.1 for further details).

4.2 From D to
√
D: Bounding the sum of variances

The main terms appearing respectively in (14), (17) and (18) all have the form of a sum of variances over
time

∑T
t=1 Vpt (αhkt) with pt a distribution over states (respectively pkt(·|st), pkt(·|st) and p̂kt(·|st))2,

and hkt the optimistic bias of episode kt. A first naïve upper bound of this sum can be derived using
Popoviciu’s inequality that we recall in Prop. 7.

Proposition 7 (Popoviciu’s inequality on variances). Let M and m be upper and lower bounds on the
values of a random variable X i.e., Pm ≤ X ≤M = 1. Then V(X) ≤ 1

4 (M −m).

2Recall that pk(·|s) :=
∑
a πk(s, a)p(s

′|s, a).
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Using Popoviciu’s inequality and under event E,

Vpt (αhkt) ≤ sp (αhk)
2
/4 = α2sp (hk)

2
/4 ≤ (rmaxD)2/4

and so
∑T
t=1 Vpt (αhkt) ≤ (rmaxD)2T/4. Unfortunately, this would result in a regret bound scaling as

Õ(rmaxD
√
T ) (ignoring all other terms like S, A, logarithmic terms, etc.) which is not better than the

classical bound of UCRL2. In this section, we show that the cumulative sum of variances only scales as
Õ(r2

maxDT + (rmaxD)2
√
T ) resulting in a regret bound of order Õ

(
rmax

√
DT + rmaxDT

1/4
)
(ignoring

all other terms).
We start by analyzing the variance term Vp̂k(·|st) (αhk). We will proceed similarly with the other variance
terms Vpk(·|st) (αhk) and Vpk(·|st) (αhk). We do the following decomposition:

Vp̂k(·|st) (αhk) = α2
(
p̂k(·|st)ᵀh2

k − (p̂k(·|st)ᵀhk)
2
)

= α2
(

(p̂k(·|st)− pk(·|st))ᵀ h2
k︸ ︷︷ ︸

1○

+ pk(·|st)ᵀh2
k − h2

k(st+1)︸ ︷︷ ︸
2○

+h2
k(st+1)− (p̂k(·|st)ᵀhk)

2︸ ︷︷ ︸
3○

)

Notice that for any r.v. X and any scalar a ∈ R, V(X+a) = V(X). Thus, the term Vp̂k(·|st) (αhk) remains
unchanged when hk is shifted by an arbitrary constant vector i.e., when hk is replaced by wk := hk+λke.
As in UCRL2, we minimize the `∞-norm of wk by choosing λk = − 1

2 (maxs∈S{hk(s)}+ mins∈S{hk(s)}).
We recall that under event E, ‖wk‖∞ ≤ (rmaxD)/(2α) and so ‖w2

k‖∞ ≤ (rmaxD)2/(4α2).

1○ The first term α2
∑kT
k=1

∑tk+1−1
t=tk

(p̂k(·|st)− pk(·|st))ᵀ w2
k is similar to

∑kT
k=1 ∆p1

k except that αwk is
replaced by α2w2

k and pk(·|st) is replaced by p̂k(·|st). In the regret proof of UCRL2 we need to decompose
pk(·|st) − pk(·|st) into the sum of pk(·|st) − p̂k(·|st) and p̂k(·|st) − pk(·|st). Here we no longer need this
decomposition and we can use the same derivation with sp

(
α2w2

k

)
≤ (rmaxD)2/4 instead of (rmaxD)/2.

Therefore, with probability at least 1− δ
6 (and under event E):

α2
kT∑
k=1

tk+1−1∑
t=tk

(p̂k(·|st)− pk(·|st))ᵀ w2
k ≤

3

2
(rmaxD)2

√√√√(∑
s,a

Γ(s, a)

)
T ln

(
6SAT

δ

)

+ (rmaxD)2

√
T ln

(
5T

δ

)
+ 3(rmaxD)2S2A ln

(
6SAT

δ

)
(1 + ln (T ))

2○ The second term α2
∑kT
k=1

∑tk+1−1
t=tk

pk(·|st)ᵀw2
k − w2

k(st+1) is identical to
∑kT
k=1 ∆p4

k except that αwk
is replaced by α2w2

k. With probability at least 1− δ
6 (and under event E):

α2
kT∑
k=1

tk+1−1∑
t=tk

pk(·|st)ᵀw2
k − w2

k(st+1) ≤ (rmaxD)2

2

√
T ln

(
5T

δ

)

3○ The last term α2
∑kT
k=1

∑tk+1−1
t=tk

w2
k(st+1)− (p̂k(·|st)ᵀwk)

2 is the dominant one and requires more
work. Unlike the first two terms, it scales linearly with T (instead of Õ(

√
T )). We first notice that

p̂k(·|st)ᵀwk = wk(st) + p̂k(·|st)ᵀwk−wk(st). Using the fact that (a+ b)2 = a2 + b(2a+ b) with a = wk(st)
and b = p̂k(·|st)ᵀwk − wk(st) (and therefore 2a+ b = wk(st) + p̂k(·|st)ᵀwk) we obtain:

(p̂k(·|st)ᵀwk)
2

= w2
k(st) + (p̂k(·|st)ᵀwk − wk(st)) · (wk(st) + p̂k(·|st)ᵀwk)

and so applying the reverse triangle inequality :

(p̂k(·|st)ᵀwk)
2 ≥ w2

k(st)− |p̂k(·|st)ᵀwk − wk(st)| · |wk(st) + p̂k(·|st)ᵀwk| (19)

For all k ≥ 1 and s ∈ S, we define rk(s) :=
∑
a πk(s, a)rk(s, a). Using the (near-)optimality equation we

can write:∣∣gk − rk(st) + α
(
wk(st)− pk(·|st)ᵀwk

)∣∣ =
∣∣gk − rk(st) + α

(
hk(st)− pk(·|st)ᵀhk

)∣∣ ≤ εk

8



Moreover, εk = rmax

tk
≤ rmax. As a result, since α > 0:

α
∣∣p̂k(·|st)ᵀwk − wk(st)

∣∣
=
∣∣gk − rk(st) + α

(
wk(st)− pk(·|st)ᵀwk

)
− gk + rk(st) + α (pk(·|st)− p̂k(·|st))ᵀ wk

∣∣
≤
∣∣gk − rk(st) + α

(
wk(st)− pk(·|st)ᵀwk

)∣∣︸ ︷︷ ︸
≤rmax

+ |rk(st)− gk|︸ ︷︷ ︸
≤rmax

+α |(pk(·|st)− p̂k(·|st))ᵀ wk|

≤ 2rmax + α |(pk(·|st)− p̂k(·|st))ᵀ wk|

It is also immediate to see that |wk(st) + p̂k(·|st)ᵀwk| ≤ 2‖wk‖∞ ≤ (rmaxD)/α. Plugging these inequali-
ties into (19) and adding w2

k(st+1) we obtain:

α2
(
w2
k(st+1)− (p̂k(·|st)ᵀwk)

2
)
≤ (2rmax + α |(pk(·|st)− p̂k(·|st))ᵀ wk|) (rmaxD)

+ α2
(
w2
k(st+1)− w2

k(st)
) (20)

It is easy to bound the telescopic sum

α2

tk+1−1∑
t=tk

w2
k(st+1)− w2

k(st) = α2
(
w2
k(stk+1

)− w2
k(stk)

)
≤ α2w2

k(stk+1
) ≤ (rmaxD)2/4 (21)

Finally, the sum α
∑kT
k=1

∑tk+1−1
t=tk

|(pk(·|st)− p̂k(·|st))ᵀ wk| can be bounded in the exact same way as∑kT
k=1 ∆p1

k . With probability at least 1− δ
6 :

α

kT∑
k=1

tk+1−1∑
t=tk

|(pk(·|st)− p̂k(·|st))ᵀ wk| ≤3rmaxD

√√√√(∑
s,a

Γ(s, a)

)
T ln

(
6SAT

δ

)
+ 4rmaxD

√
T ln

(
5T

δ

)

+ 6rmaxDS
2A ln

(
6SAT

δ

)
(1 + ln (T )) (22)

After gathering (21) and (22) into (20)) we conclude that with probability at least 1− δ
6 (and under event

E):

α2
kT∑
k=1

tk+1−1∑
t=tk

w2
k(st+1)− (p̂k(·|st)ᵀwk)

2 ≤ 2r2
maxDT︸ ︷︷ ︸

main term

+
kT (rmaxD)2

4
+ Õ

(rmaxD)2

√√√√(∑
s,a

Γ(s, a)

)
T


In conclusion, there exists an absolute numerical constant β > 0 (i.e., independent of the MDP instance)
such that with probability at least 1− 5δ

6 :

T∑
t=1

Vp̂kt (·|st) (αhkt) ≤ β ·

r2
maxDT + (rmaxD)2

√√√√(∑
s,a

Γ(s, a)

)
T ln

(
T

δ

)
+ (rmaxD)2S2A ln

(
T

δ

)
ln (T )


We can prove the same bound (possibly with a different multiplicative constant β) for

∑T
t=1 Vpkt

(·|st) (αhkt)

and
∑T
t=1 Vpkt (·|st) (αhkt) using the same derivation.

4.3 Completing the regret bound of Thm. 1
After plugging the bound derived for the sum of variances in the previous section (Sec. 4.2) into (14), (17)
and (18), we notice that (14) and (18) can be upper-bounded by (17) up to a multiplicative numerical
constant ans so it is enough to restrict attention to (17). The dominant term that we obtain is (ignoring
numerical constants):

rmax

√√√√√(∑
s,a

Γ(s, a)

)
ln

(
T

δ

)
ln (T )

DT +D2

√√√√(∑
s,a

Γ(s, a)

)
T ln

(
T

δ

)
+D2S2A ln

(
T

δ

)
ln (T )
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Using the fact that
√∑

i ai ≤
∑
i

√
ai for any ai ≥ 0, we can bound the above square-root term by three

simpler terms:

(1) A
√
T -term (dominant): rmax

√√√√D

(∑
s,a

Γ(s, a)

)
T ln

(
T

δ

)
ln (T )

(2) A T 1/4-term: rmaxD

(∑
s,a

Γ(s, a)

)3/4

T 1/4

(
ln

(
T

δ

))3/4√
ln (T )

(3) A logarithmic term: rmaxD

√√√√S2A

(∑
s,a

Γ(s, a)

)
ln

(
T

δ

)
ln (T ) ≤ rmaxDS

2A ln

(
T

δ

)
ln (T )

When T ≥ D2
(∑

s,a Γ(s, a)
)

ln
(
T
δ

)
, we notice that the T 1/4-term (2) is actually upper-bounded by the

√
T -term (1), while for T ≤ D2

(∑
s,a Γ(s, a)

)
ln
(
T
δ

)
we can use the trivial upper-bound rmaxT on the

regret:

R(T,M?,UCRL2B) ≤ rmaxT ≤ rmaxD
2

(∑
s,a

Γ(s, a)

)
ln

(
T

δ

)
≤ rmaxD

2S2A ln

(
T

δ

)
To complete the regret bound of Thm. 1 we also need to take into consideration the lower order terms
of (14), (17) and (18). It turns out that the only terms that are not already upper-bounded by (1), (2)
and (3) (up to multiplicative numerical constants) sum as:

rmax

√
SAT ln

(
T

δ

)
+ rmaxSA ln

(
T

δ

)
ln (T ) + rmaxD

2S2A ln

(
T

δ

)
ln (T )

All the above logarithmic terms can be bounded by: max
{
rmax, rmaxD

2
}
S2A ln

(
T
δ

)
ln (T ). Moreover,

all the
√
T -terms can be bounded by

max
{
rmax, rmax

√
D
}√√√√(∑

s,a

Γ(s, a)

)
T ln

(
T

δ

)
ln (T )

To conclude, we only need to adjust δ to obtain an event of probability at least 1 − δ. This will only
impact the multiplicative numerical constants of the above terms.
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A Additional Results
Lemma 8. It holds almost surely that for all k ≥ 1 and for all (s, a) ∈ S ×A× S:

kT∑
k=1

νk(s, a)√
N+
k (s, a)

≤ 3
√
NkT +1(s, a) and

kT∑
k=1

νk(s, a)

N+
k (s, a)

≤ 2 + 2 ln
(
N+
kT +1(s, a)

)
(23)

Proof. The proof follows from the rate of divergence of the series
∑n
i=1

1√
i
∼
√
n and

∑n
i=1

1
i ∼ ln (n)

respectively when n→ +∞.

B MDS
For any t ≥ 0, the σ-algebra induced by the past history of state-action pairs and rewards up to
time t (included) is denoted Ft = σ(s1, a1, r1, . . . , st, at, rt, st+1) where by convention F0 = σ (∅) and
F∞ := ∪t≥0Ft. Trivially, for all t ≥ 0, Ft ⊆ Ft+1 and the filtration (Ft)t≥0 is denoted by F. We
recall that kt is the integer-valued r.v. indexing the current episode at time t. It is immediate from
the termination condition of episodes that for all t ≥ 1, kt is Ft−1-measurable i.e., the past sequence
(s1, a1, r1, . . . , st−1, at−1, rt−1, st) fully determines the ongoing episode at time t. As a consequence, the
stationary (randomized) policy πkt executed at time t is also Ft−1-measurable.

B.1 Proof of Lemma 6
Let’s define the stochastic process

Xt :=
∑
a,s′

πkt(st, a)pkt(s
′|st, a)hkt(s

′)−
∑
s′

pkt(s
′|st, at)hkt(s′)

Let’s define λt = −
∑
a,s′ πkt(st, a)pkt(s

′|st, a)hkt(s
′) and wt = hkt+λte. Since by definition

∑
s′ pkt(s

′|st, at) =
1, we have

Xt = −
∑
s′

pkt(s
′|st, at)wt(s′)

It is easy to verify that E [Xt|Ft−1] = 0 and so (Xt,Ft)t≥1 is an MDS. Moreover, |Xt| ≤ ‖wt‖∞ ≤
sp (hkt) ≤ (rmaxD) and

V
(
Xt

∣∣Ft−1

)
=
∑
a

πkt(st, a)

(∑
s′

pkt(s
′|st, a)wt(s

′)

)2
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Proposition 9. For any n ≥ 1 and any n-tuple (a1, . . . , an) ∈ Rn, (
∑n
i=1 ai)

2 ≤ n
(∑n

i=1 a
2
i

)
.

Proof. The statement is trivially true for n = 1. For n = 2 we have (a1 − a2)2 = a2
1 + a2

2 − 2a1a2 ≥ 0
implying that 2a1a2 ≤ a2

1 + a2
2. Therefore, (a1 + a2)2 = a2

1 + a2
2 + 2a1a2 ≤ 2(a2

1 + a2
2) and so the result

holds. We prove the result for n ≥ 2 by induction. Assumed that it is true for any n ≥ 2. Then we have:(
n+1∑
i=1

ai

)2

=

(
n∑
i=1

ai

)2

︸ ︷︷ ︸
≤n(

∑n
i=1 a

2
i )

+a2
n+1 + 2an+1

n∑
i=1

ai

≤ n

(
n∑
i=1

a2
i

)
+ a2

n+1 +

n∑
i=1

2aian+1︸ ︷︷ ︸
≤a2i +a2n+1

≤ (n+ 1) ·

(
n+1∑
i=1

a2
i

)

where the first inequality follows from the induction hypothesis and the second inequality follows from
the inequality for n = 2 that we proved. This concludes the proof.

For the sake of clarity we will now use the notation pk(s′|s) :=
∑
a∈As

πk(s, a)pk(s′|s, a) for every s, s′ ∈ S
and every k ≥ 1. Using Prop. 9 we have that

V
(
Xt

∣∣Ft−1

)
≤ S

∑
a,s′

πkt(st, a) pkt(s
′|st, a)2︸ ︷︷ ︸

≤pkt (s′|st,a)

wkt(s
′)2

≤ S
∑
a,s′

πkt(st, a)pkt(s
′|st, a)wkt(s

′)2 = S · Vpkt (·|st) (hkt)

After applying Freedman’s inequality (Prop. 2) to the MDS (Xt,Ft)t≥1 we obtain that with probability
at least 1− δ

6 , for all T ≥ 1:

kT∑
k=1

∑
s,a,s′

νk(s)πk(s, a)pk(s′|s, a)hk(s′) ≤
kT∑
k=1

∑
s,a,s′

νk(s, a)pk(s′|s, a)hk(s′) + 2(rmaxD) ln

(
24T

δ

)

+ 2

√√√√S ln

(
24T

δ

) T∑
t=1

Vpkt (·|st) (hkt) (24)

We can do exactly the same analysis with the stochastic process

Xt :=
∑
a,s′

πkt(st, a)p(s′|st, a)hkt(s
′)−

∑
s′

p(s′|st, at)hkt(s′)

i.e., with p instead of pkt and we obtain that with probability at least 1− δ
6 , for all T ≥ 1:

−
kT∑
k=1

∑
s,a,s′

νk(s)πk(s, a)p(s′|s, a)hk(s′) ≤−
kT∑
k=1

∑
s,a,s′

νk(s, a)p(s′|s, a)hk(s′) + 2(rmaxD) ln

(
24T

δ

)

+ 2

√√√√S ln

(
24T

δ

) T∑
t=1

Vpkt
(·|st) (hkt) (25)

with the notation pk(s′|s) :=
∑
a∈As

πk(s, a)p(s′|s, a) for every s, s′ ∈ S and k ≥ 1.

B.2 Definition of The Confidence Intervalsd
Theorem 10. The probability that there exists k ≥ 1 s.t. the true MDPM does not belong to the extended
MDPMk defined by Eq. 5 and 6 is at most δ

3 , that is

P (∃k ≥ 1, s.t. M 6∈ Mk) ≤ δ

3
.
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Proof. We want to bound the probability of event E :=
⋃+∞
k=1 {M 6∈ Mk}. As explained by Lattimore and

Szepesvári (2018, Section 4.4), when (s, a) is visited for the n-th times, the reward that we observe is the
n-th element of an infinite sequence of i.i.d. r.v. lying in [0, rmax] with expected value r(s, a). Similarly,
the next state that we observe is the n-th element of an infinite sequence of i.i.d. r.v. lying in S with
probability density function (pdf) p(·|s, a). In UCRL2, we defined the sample means p̂k and r̂k, and the
confidence intervals Bkp and Bkr (Eq. 5 and 6) as depending on k. Actually, this quantities depends only
on the first Nk(s, a) elements of the infinite i.i.d. sequences that we just mentioned. For the rest of the
proof, we will therefore slightly change our notations and denote by p̂n(s′|s, a), r̂n(s, a), Bnp (s′|s, a) and
Bnr (s, a) the sample means and confidence intervals after the first n visits in (s, a). Thus, the r.v. that
we denoted by p̂k in UCRL2 actually corresponds to p̂Nk(s,a) with our new notation (and similarly for
r̂k, Bkp and Bkr ). This change of notation will make the proof easier.
M 6∈ Mk means that there exists k ≥ 1 s.t. either p(s′|s, a) 6∈ BNk(s,a)

p (s, a, s′) or r(s, a) 6∈ BNk(s,a)
r (s, a)

for at least one (s, a, s′) ∈ S × A × S. This means that there exists at least one value n ≥ 0 s.t. either
p(s′|s, a) 6∈ Bnp (s, a, s′) or r(s, a) 6∈ Bnr (s, a). As a consequence we have the following inclusion

E ⊆
⋃
s,a

+∞⋃
n=0

{r(s, a) 6∈ Bnr (s, a)} ∪
⋃
s′

{
p(s′|s, a) 6∈ Bnp (s, a, s′)

}
(26)

Using Boole’s inequality we thus have:

P (E) ≤
∑
s,a

+∞∑
n=0

(
P (r(s, a) 6∈ Bnr (s, a)) +

∑
s′

P
(
p(s′|s, a) 6∈ Bnp (s, a, s′)

))
(27)

Let’s fix a 3-tuple (s, a, s′) ∈ S ×A× S and define for all n ≥ 0

εsas
′

p,n := σ̂p,n(s′|s, a)

√
2 ln (30S2A(n+)2/δ)

n+
+

3 ln
(
30S2A(n+)2/δ

)
n+

(28)

εsar,n := σ̂r,n(s, a)

√
2 ln (30SA(n+)2/δ)

n+
+

3rmax ln
(
30SA(n+)2/δ

)
n+

(29)

where σ̂p,n(s′|s, a) and σ̂r,n(s, a) denote the population variances obtained with the first n samples. It is
immediate to verify that εsas

′

p,n ≤ βsas
′

p,n and εsar,n ≤ βsar,n a.s. (see Eq. 3 and 4 with Nk(s, a) replaced by n).
Using the empirical Bernstein inequality (Audibert et al., 2009, Thm. 1) we have that for all n ≥ 1:

P
(
|p(s′|s, a)− p̂n(s′|s, a)| ≥ βsas

′

p,n

)
≤ P

(
|p(s′|s, a)− p̂n(s′|s, a)| ≥ εsas

′

p,n

)
≤ δ

10n2S2A
(30)

P
(
|r(s, a)− r̂n(s, a)| ≥ βsar,n

)
≤ P

(
|r(s, a)− r̂n(s, a)| ≥ εsar,n

)
≤ δ

10n2SA
(31)

Note that when n = 0 (i.e., when there hasn’t been any observation of (s, a)), εsas
′

p,0 ≥ 1 and εsar,0 ≥ rmax

so P
(
|p(s′|s, a)− p̂0(s′|s, a)| ≥ εsas′p,0

)
= P

(
|r(s, a)− r̂0(s, a)| ≥ εsar,0

)
= 0 by definition. Since in addition

(also by definition)

Bnp (s, a, s′) ⊆
[
p̂n(s′|s, a)− βsas

′

p,n , p̂n(s′|s, a) + βsas
′

p,n

]
(see Eq. 5)

and
Bnr (s, a) ⊆

[
r̂n(s, a)− βsar,n, r̂k(s, a) + βsar,n

]
(see Eq. 6)

we conclude that for all n ≥ 1

P
(
p(s′|s, a) /∈ Bnp (s, a, s′)

)
≤ δ

10n2S2A
and P (r(s, a) /∈ Bnr (s, a)) ≤ δ

10n2SA

and these probabilities are equal to 0 if n = 0. Plugging these inequalities into Eq. (27) we obtain:

P (∃T ≥ 1,∃k ≥ 1 s.t.M 6∈ Mk) ≤
∑
s,a

(
0 +

+∞∑
n=1

(
δ

10n2SA
+
∑
s′

δ

10n2S2A

))
=

2π2δ

60
≤ δ

3

which concludes the proof.
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