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Why Talking about Goal-Oriented Problems?
3

Growing interest, especially in deep RL community

• Many applications are goal-oriented (reward driven)

• Goal-conditioning RL (generalization)

• Unsupervised RL (generalization)

Impressive results in complex domains



Goal-Oriented Reinforcement Learning
4

Holds the promise to model and learn goal-oriented behavior

Learn to reach the goal state with minimum total expected cost



Markov decision Process (MDP)
5

State space S
Action space A
Transition probabilities p(s′|s, a)
Cost function c(s, a) ∈ [0, 1] (= negative reward)
Goal state g ∈ S



Policy Value
6

Find the policy π : S → A that minimizes the expected cumulative cost

min
π

Eπ

[ ∞∑
t=1

ω(t)c(st, at)

]

Finite
Horizon

Infinite-Horizon
Discounted

Goal-Oriented
(a.k.a. stochastic shortest path)

Weights ω(t) 1[t ≤ H] γt−1 1[t ≤ τπ]

Intrinsic Horizon H
1

1− γ
τπ := inf {t ≥ 1 : st = g, π}

H and γ fixed and known in advance

τπ is a random variable. It may be ∞ for many policies



Stochastic Shortest Path (SSP)
7

SSP strictly generalizes the finite-horizon and discounted models [Guillot and Stauffer,

2020]

SSP captures tasks with varying and unknown horizon



Stochastic Shortest Path (SSP): value functions
8

Goal-reaching (hitting) time

τπ(s → g) := inf {t ≥ 1 : s1 = s, st = g, π}

Value Functions of policy π

V π(s → g) := E

ππ(s→g)∑
t=1

c(st, π(st))|s1 = s


Qπ(s, a, g) := E

ππ(s→g)∑
t=1

c(st, at)|s1 = s, a1 = a, at = π(st)


* p(g|g, a) = 1, c(g, a) = 0



Example
9



Optimal policy
10

Trade-off between two objectives

π⋆ =argmin
π

V π(s → g)

s.t. max
s

E[τπ(s → g)] < ∞

Object 1: minimize the cumulative cost

Object 2: reach the goal*

*assumed to be reachable



Important Quantities in SSP
[Tarbouriech et al., 2021c, Cohen et al., 2021]

11

Minimum cost cmin = min
s ̸=g,a

c(s, a)

Value function bound B⋆ = max
s

{V ⋆(s)}

Hitting time bound T⋆ = max
s

{T π⋆(s)}

Diameter D = max
s

min
π

T π(s)

Are they related?

B⋆ ≤ D ≤ T⋆ ≤
B⋆

cmin

*assuming c(s, a) ∈ [0, 1]



Summary
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A policy is proper if it reaches g with probability 1 starting from any state
Assumption: there exists at least one proper policy
We denote by π⋆ the optimal proper policy

T π(s) = E[τπ(s → g)] π⋆ ∈ arg min
π:∥Tπ∥∞<∞

V π

Important quantities

B⋆ = max
s

{V ⋆(s)} T⋆ = max
s

{T π⋆(s)} B⋆ ≤ T⋆ ≤
B⋆

cmin

*assuming c(s, a) ∈ [0, 1]



Planning in SSP



Bellman Equations
14

For any stationary policy we define the Bellman operator

LπV (s) = c(s, π(s)) +
∑
y

p(y|s, π(s))V π(y)

Optimal Bellman Operator

LV (s) = min
a

{
c(s, a) +

∑
y

p(y|s, a)V π(y)

}

The fixed point equations are generally expected to hold in MDP models. Yet this may
not be the case in SSP [Bertsekas and Tsitsiklis, 1991]



Classical SSP Assumptions
15

If
1 There exists at least one proper policy (guranteed when cmin < 0)
2 For every improper policy there is at least one state s such that V π(s) = +∞

Then
The optimal value function is the unique solution of V ⋆ = LV ⋆

A stationary policy is optimal if and only if LπV ⋆ = LV ⋆

The method of value iteration converges to V ⋆ from every initial vector
The method of policy iteration yields an optimal proper policies starting from a
proper policy
The optimal value function and policy can be computed using linear programming



Value Iteration
16

Input: p and c
Set V0 = 0
for k = 1, 2, . . . do

Vk = LVk−1

Still not easy to define a termination condition
L may not be a contraction w.r.t. any norm
If all the stationary policies are proper, L is a contraction in a weighted
sup-norm



Stochastic Shortest Path (SSP)
17

Planning in SSP studied since the 1990s [Bertsekas and Tsitsiklis, 1991]

Online learning in SSP has been studied only recently



Online Learning Problem
18

Transitions P and costs c are unknown

Episode k starts at s1 and ends if and only if goal g is reached

We compete against the optimal proper policy

π⋆ = argmin
π proper

V π = argmin
π:∥Tπ∥∞<∞

V π

*figure from [Bertsekas and Yu, 2013]



Online Learning Problem
19

Input: S, g,A, no prior knowledge of p and c
for episodes k = 1, 2, . . . ,K do

Set t = 0 and initial state st = s1

while sk,h ̸= g do
Execute at = πt(st)
Observe cost ct and next state st+1 ∼ P (·|st, at)
Update policy πt+1

Set t = t+ 1

Question: how do we evaluate the performance of an algorithm?



❶ Sample-Complexity
20

How many samples are sufficient to compute a near-optimal policy w.h.p.?

Let T be the random stopping time by when an algorithm terminates and returns
a policy π̂. An algorithm is (ε, δ)-correct algorithm with sample complexity N(A)
if

P
[
T ≤ N(A), ∥V πt − min

π:proper
V π∥∞ ≤ ε

]
≥ 1− δ

and N(A) ≲ poly
(1
ε
, log(1/δ), B⋆, T⋆, S,A

)
.

* ≲ hides possibly constants and logarithmic factors
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❷ Regret
21

How much suboptimal is the total cost of the algorithm compared to executing the
optimal policy?

Let Ik be the length of episode k and

RK :=
K∑
k=1

[(
Ik∑
h=1

ck,h − min
π:proper

V π(s1)

)]

Then an algorithm has sublinear regret if

RK ≤ poly(S,A,B⋆, T⋆, log(1/δ)) ·Kα, 0 < α < 1

If ∃k, Ik = ∞, then we define RK = ∞
The algorithm may execute a non-stationary policy πk in episode k

[ In finite horizon we consider the expected performance of the agent:
K∑

k=1

[
V πk(s0)− V ⋆(s0)

]
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1 Regret Minimization
Lower Bound
Upper Bounds

2 Sample Complexity
With a Generative Model

Lower Bound
Upper Bounds

Without a Generative Model



Regret Minimization in SSP
23

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)
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What is the best performance we can achieve?



Minimax Lower Bound
25

Theorem ([Rosenberg et al., 2020])

There exists a SSP-MDP with S states, A actions and B⋆ = max
s

{V ⋆(s)} ≥ 1, any
algorithm A at any episode K suffers a regret of at least

Ω
(
B⋆

√
SAK

)

* if B⋆ < 1 the lower bound is Ω(
√

B⋆SAK) [Cohen et al., 2021]



Regret Upper-Bounds



The start...
27
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UC-SSP: Upper-Confidence SSP
The first algorithm for regret minimization in SSP

28

Input: S, g,A
for episodes k = 1, 2, . . . ,K do

① Compute an optimistic cost-weighted SSP policy πk

② Execute policy πk for up to Hk steps

if g is not reached then
Reach the goal as fast as possible,
by performing ① + ② with unit costs c(s, a) = 1, c(g, a) = 0



UC-SSP: Upper-Confidence SSP
The first algorithm for regret minimization in SSP

28

Input: S, g,A
for episodes k = 1, 2, . . . ,K do

① Compute an optimistic cost-weighted SSP policy πk

② Execute policy πk for up to Hk steps

if g is not reached then
Reach the goal as fast as possible,
by performing ① + ② with unit costs c(s, a) = 1, c(g, a) = 0

1) How to compute the policy πk?

2) How to select the horizon Hk?



1) How to compute the policy πk?
29

Optimism: select a policy πk with lowest optimistic value Vk.

Lemma
With high probability, for any episode k, we have for any s ∈ S,

Vk(s) ≤ V ⋆(s)



1) How to compute the policy πk?
30

UC-SSP uses model-optimism for SSP based on Hoeffding inequality

� Recipe for Model Optimism

1 Build confidence set around empirical transitions and rewards

D(ph(·|s, a), p̂h(·|s, a)) ≤ βp
hk(s, a)

|rh(s, a), r̂h(s, a)| ≤ βr
hk(s, a)

and, with high probability

ph(s, a) ∈ Bp
hk(s, a), rh(s, a) ∈ Br

hk(s, a)

2 Jointly optimize over models and policies

(Mk, πk) ∈ argmin
M=(p,r)∈(Bp,Br),π

{
V π
1,M

}



2) How to select the horizon Hk?
31

Denote by τk the optimistic goal-reaching time of the policy πk.

The horizon Hk is selected such that

max
s∈S

P
(
τk(s) ≥ Hk

)
is small enough



Regret Guarantee of UC-SSP
32

Theorem
For any tabular SSP-MDP the regret of UC-SSP can be bounded with high probability
as follows:

RK ≤ ÕK

(√
K

cmin

)
or RK ≤ ÕK

(
K2/3

)
Does not require prior knowledge about B⋆ or T⋆

Offset all the costs by a small perturbation to deal with the case cmin = 0

c′(s, a) = max{c(s, a), η} or c′(s, a) = c(s, a) + η

η =
1

poly(K)



A First Improvement...
33

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)
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UCRL2-based Algorithm
[Rosenberg et al., 2020]

34

Input: S, g,A
for episodes k = 1, 2, . . . ,K do

st = s1

while g is not reached do

if some quantity is “doubled” then
Compute optimistic policy πt

Execute policy πt

Simple algorithm based on the principle of model optimism (based on UCRL2)
• Leverages Bernstein-like confidence intervals for the model

Very smart and refined analysis
Use cost perturbation to deal with cmin = 0

* condition is the usual doubling condition of UCRL2 [Jaksch et al., 2010], an algorithm for regret minimiza-
tion in average reward



UCRL2-based Algorithm: Regret Guarantee
35

Theorem
For any tabular SSP-MDP the regret of [Rosenberg et al., 2020] can be bounded with high
probability as follows:

RK ≤ Õ
(
B⋆S

√
AK

)
where B⋆ is provided as prior knowledge to the algorithm

√
K also in the case of cmin = 0

Requires prior knowledge about B⋆ (otherwise worse bound B
3/2
⋆ )

Not yet minimax optimal



A Minimax Algorithm...
36

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)
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A Novel Reduction from SSP to Finite-Horizon*
[Cohen et al., 2021]

37

Input: S, g,A, B⋆, T⋆, an algorithm
AFH for regret min. in finite-horizon MDPs

Set horizon H = O(T⋆ log(K))
for episodes k = 1, 2, . . . ,K do

st = s1

while g is not reached do
Run one episode of AFH from the current
state

if g was reached then
Pad trajectory to be of length H and
feed it to AFH

else
Give an additional terminal cost of
O(B⋆)

Feed trajectory and terminal cost to
AFH

* [Chen and Luo, 2021] and [Chen et al., 2021b] use a different reduction to finite-horizon in adversarial SSP.



The Finite-Horizon Model
38

The finite-horizon MDP MH with horizon H

• Same transitions P and costs c as in the SSP

ĉ(s, a) = c(s, a)I(s ̸= g), P̂ (s′|s, a) =

P (s′|s, a) s ̸= g

1 s = g, s′ = g

• Additional terminal cost cf (s) = O(B⋆1{s ̸= g})

The value function

V π
h (s) = Eπ

[
H∑

h′=h

ĉ(sh′ , ah′) + cf (sH+1)

∣∣∣∣ah′ = πh′(sh′)

]

� for H = Õ(T⋆), V ⋆(s) ≈ V ⋆
1 (s) = argmin

π=(πh)
V π
h



Properties of The Finite-Horizon Algorithm
39

Since we estimate P and c, the FH algorithm should be

• Model-based (i.e, keeps estimates of P and c)

• Greedy w.r.t. an estimated Q-function

• Optimistic

• Fast enough. After a certain number of visits, the error in estimated P and c should

decrease at a proper rate



A “Novel” Finite-Horizon Algorithm
40

They proposed ULCVI a value optimistic algorithm for finite-horizon
=⇒ Maintains both an optimistic and a pessimistic estimate of the Q-function

� Recipe for Value Optimism

1 Compute exploration bonus bhk(s, a)

2 Solve optimistic Bellman equation

Qhk(s, a) = chk(s, a)− bhk(s, a) + p̂hk(s, a)Vh+1,k

i.e., value iteration on Mk = (S,A, ĉhk − bhk, p̂hk, H)

¬ upper confidence bounds directly on the optimal value function V ⋆

* By leveraging primal and dual LP formulation of the MDP formalism, “Every model-optimistic algorithm can be written as a value-
optimistic algorithm” [Neu and Pike-Burke, 2020]. bh is based on the conjugate of the divergence D used for model uncertainty.



A “Novel” Finite-Horizon Algorithm
41

They proposed ULCVI a Value Optimistic algorithm for finite-horizon
=⇒ Maintains both an optimistic and a pessimistic estimate of the Q-function

They proved a horizon-free1 regret bound

RK,FH =

K∑
k=1

V πk
1 (s1)− V ⋆

1 (s1) = Õ(B⋆

√
SAK)

when B⋆ = max
s,h

{V ⋆
h (s)} is known to the algorithm

1An algorithm for online finite-horizon MDPs with (expected) total reward bounded by B is (nearly)
horizon-free if its regret depends only logarithmically on the horizon H (and polynomially in B)



Reduction from SSP to FH: Regret Guarantee
42

Theorem
For any tabular SSP-MDP the regret of [Cohen et al., 2021] using ULCVI (with
H = Õ(T⋆ log(K))) can be bounded with high probability as follows:

RK ≤ Õ
(
B⋆

√
SAK

)
where B⋆, T⋆ are provided as prior knowledge to the algorithm

Minimax optimal
It runs a non-stationary policy
Requires prior knowledge of T⋆ and B⋆

2

2B⋆ can be estimated in T 2
⋆S

2A episodes



Towards a “Better” Minimax Algorithm...
43

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)
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Three desired properties
for a learning algorithm in online SSP

44

① Minimax

=⇒ regret Õ(B⋆

√
SAK)

② Parameter-free

=⇒ no knowledge of B⋆ and T⋆

③ Horizon-free

=⇒ regret depends only logarithmically on T⋆.

[ While B⋆ ≤ T⋆ always holds, the gap may be arbitrarily large

[ Lower bound: the regret depends on B⋆, but a priori not on T⋆, even as a lower-order term
(see [Rosenberg et al., 2020, Cohen et al., 2021])
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Where do we stand...
45

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Tarbouriech et al., 2020a] Model optim. ÕK(
√
K/cmin) or ÕK(K

2/3) No None No

[Rosenberg et al., 2020] Model optim.
Õ
(
B

3/2
⋆ S

√
AK + T⋆B⋆S

2A
)

No None No

Õ
(
B⋆S

√
AK + T

3/2
⋆ S2A

)
No B⋆ No

[Cohen et al., 2021]
Value optim. on
finite-horizon

reduction
Õ
(
B⋆

√
SAK + T 4

⋆S
2A
)

Yes B⋆, T⋆ No

Lower Bound: Ω(B⋆

√
SAK)



EB-SSP Algorithm
[Tarbouriech et al., 2021c]

46

Key ingredients:

Model-based, value optimistic on the non-truncated SSP

Carefully skews the empirical transitions + perturbs the empirical costs with an
exploration bonus

Induces an optimistic SSP problem whose associated value iteration scheme is
guaranteed to converge

Does not need to known T⋆, and uses an adaptive proxy B for unknown B⋆



EB-SSP: Algorithmic Idea
47

Set C = 0, t = 1
for episode k = 1, . . . ,K do

while st ̸= g do
if some quantity is “doubled” then

Compute Qt using VISCO and B̃

if ∥Qt∥∞ > B̃ or C > B̃ then
Set B̃ = 2B̃, C = 0

Compute Qt using VISCO and B̃

Execute at = argmax
a

Qt(st, a), observe ct and st+1

Set C = C + ct and t = t+ 1
st+1 = s1



EB-SSP: Value Optimism
48

1 Empirical transitions P̂s,a,s′ , empirical costs ĉ(s, a), visit counters n(s, a)

2 Slightly goal-skewed empirical transitions P̃ :

P̃s,a,s′ :=
n(s, a)

n(s, a) + 1
P̂s,a,s′ +

I[s′ = g]

n(s, a) + 1

Transition model P P̂ P̃

Number of
proper policies At least one Possibly none All

3 Refined bonus b(V, s, a)



Value Optimism on SSP
49

Algorithm 1: VISCO: Value Iteration with Slight Goal Optimism
Input: Precision ε
Set V (0) = 0

while ∥V (i+1) − V (i)∥∞ > ε do

V (i+1) = max
{
min
a∈A

{
ĉ(s, a) + P̃s,a V − b(V, s, a)

}
, 0
}

1 Optimistic
2 Convergence in a finite number of iterations



EB-SSP: Regret Guarantees
50

Algorithm Approach Regret Minimax Parameters Horizon-
Free

Õ
(
B⋆

√
SAK +B⋆S

2A
)

Yes B⋆, T⋆ Yes

Õ

(
B⋆

√
SAK +B⋆S

2A+
T⋆

poly(K)

)
Yes B⋆ No∗

[Tarbouriech et al., 2021c]
Value optim. on

non-truncated SSP
Õ
(
B⋆

√
SAK +B3

⋆S
3A
)

Yes T⋆ Yes

Õ

(
B⋆

√
SAK +B3

⋆S
3A+

T⋆

poly(K)

)
Yes None No∗

Lower Bound: Ω(B⋆

√
SAK)

* We can show that a T⋆ dependence is unavoidable without prior knowledge [Chen et al., 2022]



Other approaches...
51

*we consider SSP with loops (i.e., episodes last as long as the goal is reached)
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Posterior Sampling for SSP
[Jafarnia-Jahromi et al., 2021]

52

Keep a Bayesian posterior for the unknown MDP (i.e., model-based)
A sample from the posterior is used as an estimate of the unknown MDP
Act greedily on the sampled MDP

Pros and Cons
m Does not require knowledge of B⋆ or T⋆, only of the prior µ1

l Bayesian regret
l Not minimax optimal



Implicit Reduction to Finite-Horizon
[Chen et al., 2021a]

53

Generic template leveraging an implicit reduction to finite horizon

Property 1: optimism Property 2: recursive decomposition of estimation error

* Image from [Chen et al., 2021a].



Implicit Reduction to Finite-Horizon
[Chen et al., 2021a]

54

This template can be instantiated with both model-free and model-based approaches

Algorithm Approach Regret Minimax Parameters Horizon-
Free

[Chen et al., 2021a]
Model-Free

Õ

(
B⋆

√
SAK +

B5
⋆S

2A

cmin

)
∼ B⋆, cmin > 0 No

Õ
(
K4/5

)
No B⋆ No

Model-Based Õ
(
B⋆

√
SAK +B⋆S

2A
)

Yes B⋆ No

* Can be made parameter-free by leveraging the idea in [Tarbouriech et al., 2021c].



Summary
55

Different algorithmic approaches

• SSP planning + fast policy

• SSP planning (model optimism, value optimism)

• Reduction to finite horizon

Both model-based and model-free algorithms exists

Minimax optimality only with model-based, and it is possible with a parameter free

algorithm



1 Regret Minimization
Lower Bound
Upper Bounds

2 Sample Complexity
With a Generative Model

Lower Bound
Upper Bounds

Without a Generative Model



Sample-Complexity
57

How many samples are sufficient to compute a near-optimal policy w.h.p.?

Two standard settings
Generative Model
We can query the transition model and cost function in any (s, a) pair

Online (a.k.a. best policy identification)
We need to interact online with the model, no teleporting

. Only the sample complexity with generative model has been studied in the literature
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We can query the transition model and cost function in any (s, a) pair

Online (a.k.a. best policy identification)
We need to interact online with the model, no teleporting

. Only the sample complexity with generative model has been studied in the literature



Sample-Complexity in SSP
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Possible direction: Regret-to-PAC conversion?
[Tarbouriech et al., 2021b]

59

Finite-horizon regret:
K∑
k=1

V πk(s1)−KV ⋆(s1)

[ Regret bound can be converted to a PAC guarantee by selecting as a candidate optimal solution
any policy chosen at random out of all episodes [e.g. Jin et al., 2018]

Challenge in SSP: the regret is defined as:

RK =
[ K∑
k=1

IK∑∑∑
h=1

c
(
sk,h, πk(sk,h)

)
︸ ︷︷ ︸

empirical costs over episode k

]
−KV ⋆(s1)

¬ A priori no guarantee on V πk(s1), which may even be +∞...
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Learning Objective
61

Question:

How many calls to the generative model are sufficient
to compute a near-optimal policy w.h.p.?

Definition
An algorithm is (ε, δ)-correct with sample complexity n, if after n calls to the
generative model it returns a policy π that verifies ∥V π − V ⋆∥∞ ≤ ε w.p. at least 1− δ.

* We assume there exists a proper policy.



What is the best performance we can achieve?



Learning Without Prior Knowledge
[Chen Tirinzoni Pirotta Lazaric 22]

63

Theorem
There exists an MDP such that any (ε, δ)-correct algorithm requires

Ω̃

(
B⋆

cmin

B2
⋆SA

ε2

)
samples.

Same dependence on S, A and ε as in discounted and finite-horizon case
B2

⋆ connected to the range of the optimal policy
In discounted setting (1− γ)−1 bounds V π for any π

B⋆/cmin is a bound to the hitting time of the optimal policy (T⋆ ≤
B⋆

cmin
)



Learning without Prior Knowledge
[Chen et al., 2022]

64

Theorem
There exists an MDP such that any (ε, δ)-correct algorithm requires

Ω̃

(
B⋆

cmin

B2
⋆SA

ε2

)
samples.

cmin > 0 =⇒ it is possible to adapt to the structure of the problem without prior
knowledge (either B⋆ or T⋆)
cmin = 0 =⇒ the problem is not learnable without prior knowledge
This is in contrast with regret minimization where the regret is bounded in any
setting

X Sample complexity in SSPs is strictly harder than in the finite-horizon and
discounted case
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Learning with Prior Knowledge
[Chen et al., 2022]

65

Theorem
For any T ≥ T⋆, there exists an MDP such that any (ε, δ)-correct algorithm knowing T
requires

Ω̃

(
min

{
B⋆

cmin
, T

}
B2

⋆SA

ε2

)
samples.

T allows the algorithm to focus only on policies such that max
s

T π(s) ≤ T

When T <
B⋆

cmin
the algorithm benefits from prior knowledge

=⇒ pruning of policies is effective

When T ≥ B⋆

cmin
there is no benefit from the prior knowledge



Learning under Restricted Optimality
[Chen et al., 2022]

66

If T is too small, the objective may change

π⋆
T (s) ∈ argmin

π:∥Tπ∥∞≤T
V π(s), V ⋆

T (s) = V π⋆
T (s), B⋆,T = max

s
V ⋆
T (s)

=⇒ If T < T⋆ then π⋆
T (s) ̸= π⋆

∞(s)

No reason to talk about (ε, δ)-correctness but rather of (ε, δ, T )-correctness



Learning under Restricted Optimality
[Chen et al., 2022]

67

Theorem
For any T < T⋆, there exists an MDP with cmin = 0 such that any (ε, δ, T )-correct
algorithm requires

Ω̃

(
B2

⋆,TTSA

ε2

)
samples.

This shows a clear dependence on the range of the value function B⋆,T and the
hitting time T of the optimal policy
Case cmin > 0 is an open problem



Sample-Complexity Upper-Bounds
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An Optimistic Algorithm
[Tarbouriech et al., 2021b]

70

Input: cmin > 0, accuracy ε, precision δ, allocation function ϕ
Set B̃ = 1/2
while continue do

B̃ = 2B̃

Get ϕ(B̃, cmin) samples for each (s, a)
Compute ṽ, π̃ using an optimistic value iteration
if ∥ṽ∥∞ ≤ B̃ then

continue = False



An Optimistic Algorithm: Regret Guarantees
71

Theorem (cmin > 0)

For any accuracy ε ∈ (0, 1], confidence δ ∈ (0, 1), and cost function c in [cmin, 1] with
cmin > 0, the algorithm in [Tarbouriech et al., 2021b] is (ε, δ)-correct with a sample
complexity bounded as

Õ

(
B3

⋆ΓSA

cminε2

)

Not minimax optimal, off by a factor Γ = max
s,a

∥P (·|s, a)∥0 ≤ S

Require knowledge of cmin > 0



And when cmin = 0?
72

Target a restricted optimality

π⋆,θ = argmin
π:∥Tπ∥∞≤θD

V π

where D = max
s

min
π

T π(s) is the SSP diameter [Tarbouriech et al., 2020a]

An algorithm is (ε, δ, θ)-correct with sample complexity n, if after n calls to the
generative model it returns a policy π that verifies ∥V π − V π⋆,θ∥∞ ≤ ε w.p. at
least 1− δ.

. (ε, δ, θ)-correctness is different than (ε, δ, T = θD)-correct since D is unknown



An Optimistic Algorithm for cmin = 0
[Tarbouriech et al., 2021b]

73

Input: θ ∈ [1,∞), accuracy ε, precision δ, allocation function ϕ

Estimate D̃ ≥ D

Set cost perturbation ν =
ε

2θD̃
Set B̃ = 1/2
while True do

B̃ = 2B̃

Get ϕ(B̃, cmin) samples for each (s, a)
Compute ṽ, π̃ using an optimistic value iteration with perturbed costs
if ∥ṽ∥∞ ≤ B̃ then

break



An Optimistic Algorithm for cmin = 0: Regret
Guarantees

74

Theorem (cmin = 0)
For any accuracy ε ∈ (0, 1], θ ≥ 1, confidence δ ∈ (0, 1), and cost function c in [0, 1],
the algorithm in [Tarbouriech et al., 2021b] is (ε, δ, θ)-correct with a sample complexity
bounded as

Õ

(
θDB3

⋆ΓSA

cminε3

)



A Minimax Algorithm...
75
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A Minimax Algorithm
76

Input: T ∈ [1,∞], accuracy ε, precision δ, allocation functions ϕ, ϕ′

Set B̃ = 2
while True do

Set H = min{B̃/cmin, T}
Get ϕ(B̃,H) samples for each (s, a)
Compute ṽ, π̃ using finite-horizon reduction with horizon H and final cost BI{s ̸= g}
if ∥ṽ∥∞ ≲ B̃ then

break
B̃ = 2B̃

Recompute policy using ϕ′ samples



Regret Guarantees
77

Theorem
For any accuracy ε ∈ (0, 1], T ≥ 1, confidence δ ∈ (0, 1), and cost function c in [0, 1],
the algorithm by [Chen, Tirinzoni, Pirotta, Lazaric] is (ε, δ, T )-correct with a sample
complexity bounded as

Õ

(
min

{
T,

B⋆

cmin

}
B2

⋆,TSA

ε2

)

Minimax optimal for (ε, δ)-correctness with and without prior knowledge
Minimax optimal for (ε, δ, T )-correctness when cmin = 0



Sample-Complexity with Generative Model
Summary

78

Performance Lower Bound [Chen, Tirinzoni, Pirotta, Lazaric 22]
finite-horizon reduction

[Tarbouriech, Pirotta, Valko, Lazaric, 21]*
optimistic SSP planning

(ε, δ) min

{
B⋆

cmin
, T

}
B2

⋆SA

ε2
min

{
B⋆

cmin
, T

}
B2

⋆SA

ε2
B3

⋆ΓSA

cminε2

(ε, δ, T )

TB2
⋆,TSA

ε2
when cmin = 0

min

{
B⋆

cmin
, T

}
B2

⋆,TSA

ε2
TB3

⋆,TΓSA

ε3
unknown when cmin > 0

* as mentioned (ε, δ, θ) and (ε, δ, T )-correctness are not exaclty equivalent. This is simplified comparison.
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Best Policy Identification
80

How many interactions with the environment are sufficient
to identify a near-optimal policy w.h.p.?

Input: accuracy ε, precision δ
while True do

st = s1
while st ̸= g do

at = πt(st)
Observe cost ct and next state st+1

Update policy πt+1

if condition then
Stop

t = t+ 1

Definition (BPI)
An algorithm is (ε, δ)-correct with sample
complexity n, if

1 it stops after n interactions
P(τn) = 1

2 it returns w.h.p. a policy that is
ε-accurate
P(∥V π⋆

n − V ⋆∥∞ ≤ ε) ≥ 1− δ



Best Policy Identification: the generic case
[Chen, Tirinzoni, Pirotta, Lazaric, 22]

81

Theorem

There exists a SSP-MDP where any (ε, δ)-correct requires Ω

(
AS

ε

)
samples to

perform BPI, even with the knowledge of B⋆, T⋆ and cmin.

Message and follow ups
BPI is “impossible” in the general case
However, under certain structural assumptions (e.g., reset action) it is possible to
perform BPI



Discussion
82

SSP is provably harder than other settings

Trade off between performance (B⋆) and (T⋆) time is critical

As well as properness plays a critical role

Regret minimization is “simpler” than sample-complexity

• Learnable in all the settings

• No need to commit to a specific policy

• Robust to imprecise prior knowledge



Discussion
83

Other SSP-related problems

Multi-Goal Exploration [Tarbouriech et al., 2021a, 2022]

Autonomous Exploration [Lim and Auer, 2012, Tarbouriech et al., 2020b, Cai et al., 2022]
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