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This Talk: Unsupervised Exploration for Goal-Based RL
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This Talk: Unsupervised Exploration for Goal-Based RL
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Outline

e Unsupervised Exploration for Controllable States
e Unsupervised Exploration for Incrementally Controllable States

e Discussion
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Unsupervised Exploration for
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Unsup. Exploration: What is the Question?

From a theory point of view [not comprehensive!]

e Active exploration for MDP estimation [Tarbouriech, Lazaric; 2019 / Tarbouriech,
Ghavamzadeh, Lazaric; 2020]

e “Simulated” generative model [Tarbouriech, Pirotta, Valko, Lazaric; 2021]
e Maximum entropy [Hazan et al.; 2019 / Mutti et al., 2022]

e Reward-free exploration [Jinetal.; 2020/ ...]



Unsup. Exploration: What is the Question?

From an algorithmic point of view [not comprehensive!]
e Intrinsically motivated RL [Schmidhuber, 1991/ Bellmare et al., 2016 / Deepak et al., 2017
/...]

e Goal generation [Colasetal., 2017 / Held et al., 2017 / Péré et al., 2018 / Laversanne-Finot
et al., 2018 / Pong et al., 2020 / Zhang et al., 2020 / Ecoffet et al., 2021 / Mezghani et al.,
2022/ ...]

e Maximum entropy [Silviu et al., 2020 / Mutti et al.,2021 / ...]



Goal-Based Reinforcement Learning

Navigation Robotics Games

Groundtruth Input

Robot View




Formalizing Goal-Based RL [see Matteo’s tutorial]

Goal

Goal-Based MDP (specific instance of SSP) State

e State space S
e Initial state S
e Goalstate g

e Actionspace _A

e Transition model p(8’|8, CL)

e Costfunction ¢(s,a) =1 c(g) —0



Formalizing Goal-Based RL

Goal-Based MDP (specific instance of SSP)
e Policyr:S—> A

e Hitting time 7‘77(8 — 8’)
e Value function = expected hitting time

VT(s = &) =E|r(s = §)]




Exploration for Goal-Based RL (see Matteo’s tutorial)

/ ¢ - 0\
Thm: Sample Complexity [Chen et al., 2022 Remarks
(similar results in Tarbouriech et al., 2020)]

e Similar to finite-horizon
There exists an algorithm that returns an

. : . : and discounted bounds
€-optimal policy with a sample complexity

e “Binary” cost function

~(T;?SA) ¢ Conin = 1

O 2 .B*:*

€




From Single-Goal to Multi-Goal

Multi-Goal MDP
o SetofGoalsG C S

e Goal-BasedPolicy 11 : S X g — A




A General Principle for Multi-Goal Exploration

o n
SYOG: Set Your Own Goals \._ =

. Select arelevant goal gg
Execute an exploratory version of 7(-|s, gi)

Improve 7T(- |s, gk) with the collected experience

BN o

If 7(-|s, gx)is good then stop

otherwise jump to 1.

Similar to many schemes defined in literature but rarely provide a
well-formalized objective and guarantees




What are “Relevant” Unsupervised Goals?

All possiblestates Gt =G = S \\ \
e Prior knowledge of the “valid” states | %
e Possibly very difficult goals QA \ 7



What are “Relevant” Unsupervised Goals?

All possible states Giest =G = S

e Prior knowledge of the “valid” states
e Possibly very difficult goals

Predefined setof states Gt =G C S

e Prior knowledge
e No generalization to unknown states at
downstream time




What are “Relevant” Unsupervised Goals?

All possible states Giest =G = S

e Prior knowledge of the “valid” states
e Possibly very difficult goals

Predefined set of states Gt =G C S

e Prior knowledge
e No generalization to unknown states at
downstream time

Radius of “competence” Gt # G C S

No prior knowledge

More natural to “express”
Enable curriculum learning
Unknown to the agent




Controllable States

Reachable State Controllable State

P|7r(s0 — s) < 00| >0



Controllable States

Controllable State
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Unsupervised Multi-Goal Exploration

Definition of MGE

e Resetaction Greset S.t. P(So|S, Areset) = 1

e Goalradius L

e Accuracy level €

e Goalset

gr = {g €S: m;nIE7T [Tﬁ(so — g)] =V*(sg = g) < }




Unsupervised Multi-Goal Exploration

environment @
S’ta‘te LCQ>

Goal-based policy that
(///) the agent is confident to

‘ % accurately control a set
7 of goal states




Unsupervised Multi-Goal Exploration

(¢,0, L)-PAC Learner
Agent stops after 7 = poly(S, A, L,log(1/d),1/€) stepsand

Accurate goal set identification
G € X COrye

>1-0

Near-optimal goal-based policy

VT (sg = g) < V*(sg—g)+e Vge X




Unsupervised Multi-Goal Exploration

(¢,0, L)-PAC Learner
Agent stops aftef T = poly(S, A, L,log(1/6),1/€) |steps and

Accurate goal set identification
L C X CGrie

>1—0

Near-optimal goal-based policy

VT (sg = g) < V*(sg—g)+e Vge X




Unsupervised Multi-Goal Exploration

(¢,0, L)-PAC Learner

Agent stops after 7 = poly(S, A, L,log(1/d),1/€) stepsand

Accurate goal set identification

0 CX CGOrye

Near-optimal goal-based policy

VT (sg = 9) < V*(so =+ g) +e

Vge X

>1—0




Unsupervised Multi-Goal Exploration

(¢,0, L)-PAC Learner r
Agent stops after 7 = poly(S, A, L,log(1/d),1/€) stepsand

Accurate goal set identification
G C X CGric

Near-optimal goal-based policy

>1—0

VT (sg = g) < V*(sg—g)+e Vge X




Unsupervised Multi-Goal Exploration

Thm: Lower Bound [Tarbouriech et al., 2022] Remarks

For any (6, 0, L)—PAC learner, there exists an e Horizonis “known”
MDP such that e Goal states are
3 unknown
L SA e Dependencies match
E[T] = Q 7% finite-horizon/discoun
€ ted




Adaptive Goal Selection Scheme - AdaGoal

I_9,

SYOG: Set Your Own Goals — AdaGoal \-

Select arelevant goal gi
Execute an exploratory version of 7(-|s, gi)

Improve 7T(- |s, gk) with the collected experience

A NN -

If 7(-|s, gx)is good then STOP and return

otherwise jump to 1.

J. Tarbouriech, O. Darwiche Domingues, P. Ménard, M. Pirotta, M. Valko, A. Lazaric
“Adaptive Multi-Goal Exploration”, Al&Stats-2022.




AdaGoal - Two Main Ingredients

Optimistic controllability Uncertainty (or regret or performance loss)
* T
Di(9) < V*(so — 9) V7™ (so = g) — Di(9) < Ek(9)
Tl \
true optimal true value of

value current policy



Adaptive Goal Selection Scheme

AdaGoal

1. Select arelevant goal gi

— aremax &
dk ggeg k(g)

small large small
&8 &8) &8)

Difficult to control # uncertain



Adaptive Goal Selection Scheme

AdaGoal

1. Select arelevant goal gi

2. Execute an exploratory version of 7(-|s, gi)

3. Improve 7T(- |s, gk) with the collected experience

Any “good”
SSP exploration algorithm



Adaptive Goal Selection Scheme

AdaGoal

Select arelevant goal gi

Execute an exploratory version of 7(-|s, gi)

Improve 7T(- |s, gk) with the collected experience

If 7(-|s, gx)is good then stop max gk (g) <e
9:Dr(9)<L

APl N -

otherwise jump to 1.

> X={geG:Di(9) <L}



Tabular-AdaGoal

Finite-horizon reduction




Tabular-AdaGoal Vi1 =V

| | Varg(.js,a) (Vrt1)
Model-based upper-confidence estimate \

refined

Qu(s,a;g) = clip(1L(s # 9) +BlIs, a)Vra (5 9)—| i |;0,H)

Dg(g) = min Q1(s0, @) /\\ /\\

optimism clipping

Adapted from P. Ménard et al. “Fast active learning for pure exploration in —

reinforcement learning”, ICML-2021. (see also [Azar et al., 2017], [Zanette and
Brunskill, 2019]).




Tabular-AdaGoal

Varg(.(s,a) (V1)

Cumulative error estimates

empirical
Bernstein
bound

_ . 3 . _
Un(s,a;9) = chp((l + ﬁ) ;pms, a) ;whﬂ(aﬂs';g)vhﬂ(s', d; g)

Propagation of
error estimates

Ex(g) = Y mr(also; 9)U1(s0,a; 9)

Adapted from P. Ménard et al. “Fast active learning for pure exploration in —

reinforcement learning”, ICML-2021. (see also [Azar et al., 2017], [Zanette and
Brunskill, 2019]).




Tabular-AdaGoal: Sample Complexity Bounds

Thm: Sample Complexity [Tarbouriech et al.,
2022]

AdaGoalis (e, 0, L)—PAC and

E[r] = 5(E—SA)

€2

)

Remarks

Stopping when confident
to return accurate goal set

and goal-based policy
Minimax optimal
Generalizable to linear
MDPs




Tabular-AdaGoal: A Simple Example

Initial state

Sampled goal

Walls

Secretroom
(reachable with low
probability from initial state)



Tabular-AdaGoal: A Simple Example




Tabular-AdaGoal: A Simple Example




Tabular-AdaGoal: A Simple Example

EPISODES > ~600

SAMPLED GOALS ARE NEITHER TOO EASY NOR TOO HARD




Uniform

Rare goals

Ada goals

[unigoal] Goals sampled during episodes 0-333
0 2 4 3 8

0

4

[raregoal] Goals sampled during episodes 0-333
0 2 4 6 ]

0

[adagoal] Goals sampled during episodes 0-333
o 2 4 I3 8

0

&

[unigoal] Goals sampled during episodes 334-666
) 2 4 6 8

[

[raregoal] Goals sampled during episodes 334-666
0 2 4 6 s

0

[adagoal] Goals sampled during episodes 334-666
o 2 4 o s

0

1

&

&

8

Tabular-AdaGoal: A Simple Example

[unigoal] Goals sampled during episodes 667-999
) 2 4 6 8

L1

I:'I._|_

6

[raregoal] Goals sampled during episodes 667-999
0 2 4 6 8

0

[adagoal] Goals sampled during episodes 667-999
o 2 4 ] s

o

120

100




Deep-AdaGoal @}

Similar to value disagreement [Zhang et al., 2020]

Ek(g) = Std{Vl“(SO;g), » -,V}’(SO;Q)}



Deep-AdaGoal

Goal
prior knowledge

g

train —

g

test

Success Rate
e © s o
v & o »

S

FetchPush-vl

FetchPickAndPlace-v1

— Adaptive
— Uniform

— Adaptive
— Uniform




Deep-AdaGoal

Goal
prior knowledge

FetchPickAndPlace-v1
1
0.8
8
S 06
Lo
4
& -
02 —— Adaptive
3 — Uniform
0

FetchPush-v1
1
08
E
Z 06
14
E 04
— Adaptive
93 —— Uniform
0
Z z 0 0 20 30 40 50
train — 7 test Epoch

Goal
misspecification

FetchPush-vl w/ Goal-Space Misspecification

gtrain ) ?lesl

FetchPickAndPlace-vl w/ Goal-Space Misspecification

0 10 20 30 40 a0
Epoch



Summary

e MGE formalizes unsupervised goal-based exploration
e AdaGoal formalizes the popular SYOG principle

e AdaGoalis minimax optimal in tabular MDPs and sample efficientin
linear MDPs

e AdaGoal can be implemented as a deepRL algorithm with encouraging
empirical results



Unsupervised Exploration for
Incrementally Controllable States

O\ Meta



Limitations of UnsupExp of Controllable States

Thm: Sample Complexity [Tarbouriech et aI., == ® >

7 e w‘z\fﬁﬁwﬁwﬁwﬁz
AdaGoal is (6, 0, L)—PAC and S >> SL \ NN N Y AN QN

2-step
ntrollable state



Limitations of UnsupExp of Controllable States

Rare goal sampling
samples the noisy TV and
ignore the red goal
= “goal” inefficient

AdaGoal prioritizes the red goal j
but still needs to learn the optimal
action at noisy TV states

= “sample” inefficient

7




Incrementally Controllable States

Q S
Q J
Policy Tr restricted on S’ QL O \ / /' O
=221 S 0
7‘-(3) — Qreset S // Y S— §
R /) TSN e
for all s ¢ S’ P // —) st )

S.Lim & P. Auer, Autonomous Exploration For Navigating In MDPs, COLT-2012.




Incrementally Controllable States

Given a partial order <on S

L-incrementally

S & Sl-'j controllable state on
partial order <

dmr restrictedon{s’ € 7 : s’ < s} VW(SO — 5) < L

S.Lim & P. Auer, Autonomous Exploration For Navigating In MDPs, COLT-2012.




Incrementally Controllable States

Q
_<.._<.®_< _<. SES?:US; Set of

L-incrementally

. < controllable states
' N O ,
O . A state is L-incrementally
N Q ‘ controllable if it can be
D < .. ~ .'< ® N reached in L steps on

average by only traversing

states that are incrementally
0 <0<0=<0d <% <

controllable

S.Lim & P. Auer, Autonomous Exploration For Navigating In MDPs, COLT-2012.




Incrementally Controllable States




Incrementally Controllable States

M-step
controllable




Incrementally Controllable States

M-step M<<N  N-step
controllable incrementally
controllable




Incrementally Controllable States

M-step M<<N  N-step
controllable incrementally
controllable

the state may be

in SL

but not in SIT)

H

Depending on the value of L, Z




Incremental Unsup. Exploration (aka Autonomous Exploration)

Definition of AX

e Resetaction Greset S.t. P(So|S, Areset) = 1
e Goalradius L
e Accuracy level €

o Goalset G/’



Incremental Unsup. Exploration (aka Autonomous Exploration)

(¢,9, L)-AX* Learner A,
Agent stops after|7 = poly(S7’) A,log(1/d),1/e, L{log(S)) |steps and

Accurate goal set identification

gL CXCGrl.

>1—0

Near-optimal goal-based policy
V™ (sg — g) < ng(so —g)+e Vge X




Incremental Unsup. Exploration (aka Autonomous Exploration)

(¢,0, L)-AX* Learner
Agent stops after 7 = poly(S7’, A,log(1/d),1/¢, L,10g(S)) steps and

Accurate goal set identification
—> —>
gL C A& C gL-i—e > 1 5

Near-optimal goal-based policy

V7T (so = g) <Vg-(so —>g)+e VgeX




Incremental Unsup. Exploration (aka Autonomous Exploration)

(¢,0, L)-AX* Learner
Agent stops after 7 = poly(S7’, A,log(1/d),1/¢, L,10g(S)) steps and

Accurate goal set identification

gL CXCGrl.

>1-9

Near-optimal goal-based policy
V™ (sg — g) < ng(so —g)t+e| Vge X

T

Optimal policy
restricted on G;’




Discover and Control - DISCO

State space




Discover and Control - DISCO

State space

L-Incrementally Controllable states




Discover and Control - DISCO

State space

L-incrementally controllable states

learned L-incrementally
controllable states



Discover and Control - DISCO

State space

L-incrementally controllable states

candidate L-incrementally
controllable states

learned L-incrementally
controllable states




Discover and Control - DISCO

o @_do

Discover & Control L

1. Refine model and discover states
2. Update policy and learned states
3. Ifpolicy is good then STOP and return

otherwise jump to 1.




Discover and Control - DISCO

o @_do

Discover & Control K—

1. Refine model and discover states
2. Update policy and learned states
3. Ifpolicy is good then STOP and return

otherwise jump to 1.

Vs € K Vif(so—s)<L+e

generative model for states in Ky

s with cost (L+eps) per sample



Discover and Control - DISCO

o @_do

Discover & Control L

V; lRefine model and discover states

2. Update policy and learned states
3. Ifpolicy is good then STOP and return

otherwise jump to 1.

Vs e Kr,ae A
Collect samples until Nk(37 a,) > ¢(’Ck)




Discover and Control - DISCO

Discover & Control L

V; lRefine model and discover states

2. Update policy and learned states
3. Ifpolicy is good then STOP and return

otherwise jump to 1.

Vs e Kr,ae A
Collect samples until Nk(37 a,) > ¢(’Ck)




Discover and Control - DISCO

fo_a. ,
Discover & Control L o Q 1 O
. \';:; ‘J @
1. lRefine model and discover states S O "‘ Oy
2,
2. Update policy and learned states @ < O
7 < S O~0—@
3. Ifpolicy is good then STOP and return 7
otherwise jump to 1. B X
o O
%
Vs € Kg,a e A IN
X

Collect samples until Nk(s, a,) > ¢(’Ck)



Discover and Control - DISCO

A NN

Discover & Control _ Q 1 > P
} \';:; | @
1. Refine model and discover states o Q “ Ur
2. lUpdate policy and learned states @ // , O N
77 N @
3. Ifpolicy is good then STOP and return %
otherwise jump to 1. %8 2
y D
/ %
Vs € Uy |\
Q) O

(mr11(8"); Vi ™ (s0 = §')) = OVI(Kg, A, Pk; 8)

\ Optimistic policy and value function



Discover and Control - DISCO

Discover & Control L

1. Refine model and discover states

2. lUpdate policy and learned states

3. Ifpolicy is good then STOP and return

otherwise jump to 1.

T . Y7Tk+1 /
s' =arg min V Sop — S
gs'euk K (so0 )

If Vie (80 = ') < Lthen Kgqq = Ky U {s"}

\ Consolidate new state



Discover and Control - DISCO

o @_do

Discover & Control K—

1. Refine model and discover states

2. Update policy and learned states

3. Ifpolicy is good then STOP and return

otherwise jump to 1.

If Vi, ' (so — s') > Lthen @

\ Not even the most optimistic
state is optimistically

L-incrementally controllable




Tabular-DISCO

Thm: Sample Complexity [Tarbouriech et al., el | Remarks

2020]

Compared to UCBExplore

DISCO is (6, 0, L)—AX* with sample complexity &ty

_{ 15T g A guarantees
E[r] = O Lps s e Better than O(L® / eps?)

2
€ e Worse than O(S))




A Simple Example

DISCO
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Limitations and Open Questions

e Deep-DISCO: Unlike AdaGoal, DISCO is intrinsically
tabular (e.g., listing consolidated and candidate ®
states, prescribing number of samples) - )

e Unified algorithm for controllable and inc.controllable lrﬂﬁ \%\I]\ ’”\\TV‘]
i\x\\

states

e Recentresultimproves (some aspects of) our bound
but still not minimax optimal

e Problem-dependent analysis

e SSP with incrementally-controllable goal

e Incremental controllability at different levels of
temporal abstraction



Limitations and Open Questions (cont’d)

Isreally Sy, # S in “practice”?

e Deterministic MDPs

e Smooth MDPs?




Discussion

O\ Meta



From Specialized to Universally Controllable Agents

Robotic \
humanoid

action rewaord state @ %

Humanoid
robotic
.. expert
limited or P
no reward

agen‘t

Unsupervised RL Zero/few-shot learning



From Learning to Control States to Skill Discovery

e Goal-based policy:
o Too “flat”

o 1goal =1 policy

o No compositionality - J_
e Performance requirement too strong (zero-shot) So

VT (sg—9g) < V*(sg—g)+e Vge X

= Generate a few policies (options) that cover the goal space and can be
efficiently fine-tuned

Kamienny*, Tarbouriech*, Lazaric, Denoyer, “Direct then Diffuse: Incremental Unsupervised Skill
Discovery for State Covering and Goal Reaching, ICLR-2022




The Role of Representation in Unsup. Exploration

e In tabular all states “equally” matter erovides samples
e A representation defines what “matters”
e An exploration strategy provides “information”

e No “grounding” on reward Represent

defines Peatures

A. Erragabi, M. Machado, M. Zhao, S. Sukhbaatar, A. Lazaric, D. Ludovic, Y. Bengio. Temporal —|
abstractions-augmented temporally contrastive learning: An alternative to the Laplacian in RL. UAI-2022.

D. Yarats, R. Fergus, A. Lazaric, L. Pinto. Reinforcement Learning with Prototypical Representations. ICML-2021.




From Goals to “Prompts”

e Beyond goals:
o Language-based tasks (e.g., “set up living room
environment for movie night”)
o Underspecified tasks (e.g., “walk in a funny way”)
o Questions (e.g., “what happens if | push the door?”)
e Change of protocol
o Add demonstrations at train time

o Add corrections at test time



“Walkin a
funny way”

Thank you!

O\ Meta



