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Why Talking About Exploration-Exploitation?
2

Superhuman performance

Mnih et al. [2015]
10 million frames

Beating world champion

Silver et al. [2016]
4.9 million games

Even best RL algorithms are very sample inefficient
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Efficiency
3

Sample efficiency

Computational efficiency
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Why do we need exploration?
4

Better exploration may significantly improve the sample efficiency

*Optimism in face of uncertainty

Tang et al. [2017]

*Thompson sampling

Fortunato et al. [2018]

o All these methods use function approximation (e.g., deepNN)
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Exploration in Deep RL: Outline
5

1 Introduction
Review of Exploration Principles
Exploration Issues in Deep RL

2 Exploration Bonus

3 Memory-Based Exploration
Episodic Memory
Goal-Oriented Exploration

4 Randomized Exploration

5 Conclusions

These slides and additional mate-
rial on my website and

https://rlgammazero.github.io/
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Super-fast intro to MDPs
Only for notation

6

Markov decision process (MDP) is a tuple M = 〈S,A, r, p〉
State space S

Action space A

Transition function p(·|s, a) ∈ ∆(S)

Reward distribution with expectation r(s, a)

Policy : π : S → ∆(A)

Value functions:

Qπ(s, a) = E

[ ∞∑
t=1

γt−1rt|s0 = s, a0 = a

]
V π(s) = Ea∼π(s)[Qπ(s, a)]

Optimal policy : π? = arg max
π

{V π}
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Online Learning Problem
7

Input: S, A rh, ph
Initialize Q1(s, a) = 0, D1 = ∅

for k = 1, . . . ,K do // episodes
Define πk based on Qk
for h = 1, . . . , H do

Execute ahk = πk(shk)
Observe rhk and sh+1,k

end
Add trajectory (shk, ahk, rhk)h≥1 to Dk+1

Compute Qk+1 from Dk+1

end

Pirotta



What is Wrong with Q-learning with ε-greedy?
8

ε-greedy strategy

ak =

arg max
a∈A

Qk(sk, a) w.p. 1− εk,

U(A) otherwise.

Q-learning update

Qk+1(sk, ak) = (1− αk)Qk(sk, ak) + αk

(
rk + max

a′∈A
Qh+1,k(sk+1, a

′)

)

, The exploration strategy relies on biased estimates Qk
, Samples are used once
, Dithering effect: exploration is not effective in covering the state space
, Policy shift: the policy changes at each step

*H = 1

Pirotta
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River Swim: Markov Decision Processes
Strehl and Littman [2008]

9
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S = {1, 2, 3, 4, 5, 6}, A = {L,R}
πL(s) = L, πR(s) = R
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River Swim: Q-learning w\ ε-greedy Exploration
10

εt = 1.0

εt = 0.5

εt =
ε0

(N(st)− 1000)2/3

εt =

1.0 t < 6000
ε0

N(st)1/2
otherwise

εt =

1.0 t < 7000
ε0

N(st)1/2
otherwise

1 2 3 4 5 6

N1
N2 N3 N4 N5 N6

Tuning the ε schedule is difficult and problem dependent
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River Swim: Q-learning w\ ε-greedy Exploration
11

Main drawbacks of Q-learning with ε-greedy

ε-greedy performs undirected exploration

Inefficient use of samples

, Regret: Ω
(

min{T,AH/2}
)

[Jin et al., 2018]

Uncertainty-driven exploration-exploitation

Pirotta
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What do we know?
12

In tabular MDPs (finite state and actions), we have several approaches for exploration

[Jaksch et al., 2010, Zhang and Ji, 2019, Fruit et al., 2018b,a, 2020, Qian et al., 2019,
Wei et al., 2020, Hao et al., 2021, Gong and Wang, 2020, Abb, 2019, Azar et al., 2017,
Dann et al., 2017, Zanette and Brunskill, 2018, Jin et al., 2018, Zanette and Brunskill,
2019, Zhang et al., 2020, Menard et al., 2021, Neu and Pike-Burke, 2020, Efroni et al.,
2019, Cai et al., 2020, Shani et al., 2020]

and we have efficient optimal algorithm (i.e., matching the statistical lower-bound)

Pirotta



Exploration in Deep RL: Outline
13

1 Introduction
Review of Exploration Principles
Exploration Issues in Deep RL

2 Exploration Bonus

3 Memory-Based Exploration
Episodic Memory
Goal-Oriented Exploration

4 Randomized Exploration

5 Conclusions
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Exploration in Tabular MDPs
14

The Four Ingredients Recipe
1 Build accurate estimators
2 Evaluate the uncertainty of the prediction
3 Define a mechanism to combine estimation and uncertainty
4 Execute the best policy

Principles:
Optimism in face of uncertainty (i.e., upper-confidence bounds)
Thompson Sampling

Pirotta



The Optimism Principle: Intuition
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https://www.lovethispic.com/image/170460/optimism-is-the-best-way-to-see-life


Optimism
16

At each episode k, we must use an estimate Qk such that

∀(s, a), Qk(s, a) ≥ Q?(s, a) (whp)

to compute the policy (since we don’t know r and p):

ahk = arg max
a

Qk(shk, a)

*Q?(s, a) = max
a

{
r(s, a) +

∑
s′
p(s′|s, a)max

a′
Q?(s′, a′)

}
, p and r are unknown

Pirotta



Optimism: Model Optimism and Value Optimism
17

Optimism in model space
construct a confidence set around p and r and jointly optimize over models and policies

Optimism in value space
construct upper confidence bounds directly on the optimal value function V ?

Both approaches lead to optimism Qk(s, a) ≥ Q?(s, a)

Pirotta



Optimism: Model Optimism
18

Build confidence set around empirical transitions such that

D
(
p(·|s, a), p̂k(·|s, a)

)
≤ βpk(s, a)

|r(s, a)− r̂k(s, a)| ≤ βrk(s, a)

and, with high probability

p(s, a) ∈ Bp
k(s, a), r(s, a) ∈ Br

k(s, a)

Compute optimistic policy and model

(Mk, πk) ∈ arg max
M=(p,r)∈(Bp,Br),π

{
V π
1,M

}
Example: [Jaksch et al., 2010]
Weissman inequality implies that D = ‖ · ‖1
and βphk(s, a) ≈ C

√
S/Nk(s, a)

Hoeffding for reward leads to βrk(s, a) ≈ C
√

1/Nk(s, a)

Nk(s, a) = # visits to (s, a) so far
(before k)

p̂k(s
′|s, a) =

Nk(s, a, s
′)

Nk(s, a)

r̂k(s, a) =
1

Nk(s, a)

k∑
t=1

rt · δsat

Pirotta



Optimism: Value Optimism
19

Compute exploration bonus bk(s, a)

Update estimated Q?

• Model-based

e.g., value iteration on Mk = (S,A, r̂k + bk, p̂k)

• Model-free

e.g., Q-learning update

Qk+1(sk, ak) = (1− αk)Qk(sk, ak) + αk

(
rk + bk + max

a′∈A
Qh+1,k(sk+1, a

′)

)

Example: [Azar et al., 2017]
bk(s, a) = C

√
1/Nk(s, a)

Nk(s, a) = # visits to (s, a) so far

(before k)

p̂k(s
′|s, a) =

Nk(s, a, s
′)

Nk(s, a)

r̂k(s, a) =
1

Nk(s, a)

k∑
t=1

rt · δsat
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Thompson Sampling
20

Keeps track of a belief over models or Q-values

P(θ|Dk−1)

Samples a plausible realization from the posterior

θk ∼ P(·|D)

Acts with such realization (i.e., believes θk is the true value)

Pirotta



What happens if we move to general problems (i.e., non tabular)?



Example: Mountain Car
22

Pirotta



Function Approximation
23

Theory of exploration has focused on (with several structural assumptions)
Linear function approximation
Kernel approximation
General function approximation
Neural exploration

­ Optimism is still a key ingredient!
, Still not very practical!

Pirotta



General Function Approximation
24

The agent is given a function class

F : S ×A → R

to approximate Q?

Idea:
Build confidence interval B of plausible Q?

Optimistic planning, i.e., pick the best in the confidence set

o Extremely challenging without further assumptions!
e.g., realizability and completeness

next practical algorithms!
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these are easy

this is hard, almost impossible

Pirotta



Why?
27

Random exploration sometimes work!
PONG GIF Montezuma with random actions!

Link

Pirotta

https://www.dropbox.com/s/z31z40gnlw27xwf/MontezumaRevenge_random.mp4?dl=1


Montezuma’s Revenge: Level 1
28

Pirotta



Exploration Issues
29

1 Discovery
Unknown State Space, Partial Observability, Sparse Reward

2 Controllability
Predictability, Learnability

3 Representation Learning

. . . and probably more!

Pirotta
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Controllability
30

In front of a screen full of white noise conveying a lot of information and “nov-
elty” and “surprise” in the traditional sense of Boltzmann and Shannon, however,
it will experience highly unpredictable and fundamentally incompressible data –
[Schmidhuber, 2010]

States can be interesting due to an
intrinsic variability
Agent may get trapped by these states

video1 video2

Are these states relevant? Probably not if they are uncontrollable and/or
unpredictable

(i
m
g
fr
om

w
ik
ip
ed
ia
)
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Benchmark: Atari 57
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Equally difficult? No
32

1 Long-term credit assignment

2 Exploration
Skiing Solaris

Montezuma’s Revenge Pitfall

Pirotta

https://www.youtube.com/watch?list=PLqYmG7hTraZDp9fZRWVMeGwUupEl7uN8S&v=0_67wNXyOcI&feature=emb_logo
https://www.youtube.com/watch?v=QDb3rmEBTZI&list=PLqYmG7hTraZBuNkJn6YFhi7TYrAg_NDAr
https://www.youtube.com/watch?list=PLqYmG7hTraZB5YFgejiwDoKBkg50SlY6z&v=o4b9FBvr28Y&feature=emb_logo
https://www.youtube.com/watch?v=imAeLt1BPu4&list=PLqYmG7hTraZBgXcetCL9zzd6Cck8S4l4k&t=6s


Exploration in Deep RL: Outline
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Idea
34

¬ Augment the reward with an additional (vanishing) reward term

rt = ret︸︷︷︸
extrinsic reward (standard)

+ β rit︸︷︷︸
intrinsic

re: extrinsic reward (task reward)
ri: intrinsic reward (exploration bonus)

­ Run any algorithm using the new reward r+t

Pirotta



Typical Objective
35

Discover novel (or controllable) states
encourage the agent to discover novel information

Improve knowledge about the environment
encourage the agent to perform actions to reduce uncertainty in predicting model evolution

. . .

� Intrinsic reward is often inspired by psychology (intrinsic motivation), e.g., curiosity
driven exploration (self-supervised) when ret = 0

Pirotta



Arbitrary � classification
36

Count-based bonus

Prediction-based bonus

Bonus based on Auxiliary Task

Pirotta



Count-based Exploration

Pirotta



Count-based Exploration
General Scheme

38

1 Estimate a “proxy” for the number of visits Ñ(st)

2 Add an exploration bonus to the rewards

r̃+t = rt + βt

√
1

Ñ(st)

3 Run any DeepRL algorithm on Dt =
{

(si, ai, r̃
+
i , si+1)

}

� ret ≈
√

1/Ñ(st) is inspired by theory (recall UCB)

Pirotta



Does it work?
39
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Count by Density Estimation
[Bellemare et al., 2016, Ostrovski et al., 2017]

40

Density estimation over a countable set X (i.e., observation space)

ρn(x) = ρ(x|x1, . . . , xn) ≈ P
[
Xn+1 = x|x1, . . . , xn

]
Recording probability

ρ′n(x) = ρ(x|x1, . . . , xn, x) ≈ P
[
Xn+2 = x|x1, . . . , xn, Xn+1 = x

]
Pseudo count Ñn(x) to imitate empirical count s.t.

Ñn(x)

ñ
= ρn(x) ≤ ρ′n(x) =

Ñn(x) + 1

ñ+ 1

=⇒ Ñn(x) =
ρn(x)(1− ρ′n(x))

ρ′n(x)− ρn(x)
= ñρn(x)

probability of x after
observing a new occur-
rency of x

Pirotta



Count-based Exploration
[Bellemare et al., 2016, Ostrovski et al., 2017]

41

- Any density estimation algorithm (accurate for images)
e.g., GMM or CTS or PixelCNN
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Count-based Exploration
Bellemare et al. [2016], Ostrovski et al. [2017]

42

Montezuma!

Pirotta

https://youtu.be/0yI2wJ6F8r0


What to Count?
43

Representation Learning? learn an embedding of state

Pirotta



What is important to learn?
44
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Count-based Exploration
[Tang et al., 2017]

45

Use locality-sensitive hashing to discretize the input
• Encode the state into a k-dim vector by random project

small k = more hash collisions
• Use the sign to discretize

small φ(s) ∈ {−1, 1}k

Count on discrete hashed-states

, Difficult to define a good hashing function
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Count-based Exploration
[Tang et al., 2017]

46

Improve counts by learning a compression

Entropy loss for the auto-encoder
“Binarization” loss for the “projection”
Use all past history to update the AE
AE should not be updated too often. We need stable codes!
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Count-based Exploration
[Tang et al., 2017]

47
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Prediction-based Exploration

Pirotta



Forward Dynamics Prediction
[Stadie et al., 2015]

49

Given an encoding φ(s), learn a prediction model

f : (φ(st), at) 7→ φ(st+1)

Use the prediction error
et = ‖φ(st+1)− f(φ(st), at)‖22

as exploration bonus rit ∝ et

How to learn φ(s)?
Pretrain the encoding (e.g., autoencoder)
Learn it online using early samples

, difficult to predict every possible change in the transitions

o exploration and repre-
sentation are intertwined!

*the bonus is a normalized and scaled error
Pirotta



Is everything relevant?
50

Idea: [Pathak et al., 2017]

predict only changes that depend on agent’s actions, ignore the rest!

Mapping: representation learning problem

learn embedding φ where only the information relevant to the action performed by the
agent is represented (controllability)

Pirotta



Intrinsic Curiosity Module
[Pathak et al., 2017]

51

Inverse dynamics: h : (φ(st), φ(st+1)) 7→ ât
Forward dynamics: f : (φ(st), at) 7→ φ̂(st+1)

Intrinsic reward:
rit = ‖φ̂(st+1)− φ(st+1)‖22

Training: end-to-end training with auxiliary losses

Pirotta



Intrinsic Curiosity Module
[Pathak et al., 2017]

52

Intuition: inverse model h should be robust to uncontrollable components

*ICM (pixel) uses only forward dynamics

Inverse dynamics learning is at the base of many subsequent approaches
Pirotta



Study of Curiosity Driven Exploration
[Burda et al., 2019a]

53

Mostly pure exploration problems with surprise-based reward

rt = rit = ‖f(st, at)− φ(st+1)‖22 ≈ − log p(st+1|st, at)

Authors identified 3 properties of good representations: Compact, Sufficient, Stable

Compared the following methods
• Pixel input: φ(x) = x
• Random features (RF)
• Variational Autoencoders (VAE): probabilistic encoder
• Inverse dynamic features (IDF): as ICM

*experiments done in infinite horizon setting to avoid termination leaking information

Pirotta



Results
54

- RF works quite well!
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Results: noisy TV
55
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From One Model to Many
56

All the methods used a single model to predict forward or inverse dynamics

We can also use multiple models and leverage disagreement
high disagreement =⇒ low confidence =⇒ need more data (exploration)
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Self-Supervised Exploration via Disagreement
[Pathak et al., 2019]

57

Ensemble method using multiple forward models (K models)

Intrinsic reward: rit = Ek
[∥∥fk(xt, at)− Ek

[
fk(xt, at)

]∥∥2
2

]
- differentiable intrinsic reward
- can be paired with representation learning
, limitations of forward model learning
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Auxiliary Task



Exploration and Predictions
59

So far, exploration bonus was based on

Generalized counts

Prediction error about dynamics

but we can use other predictions for exploration =⇒ value predictions

Pirotta



DORA
[Fox et al., 2018]

60

Consider two MDPs
Original MDP M = (S,A, p, r, γ)
=⇒ learn Q?M (s, a) (task objective)

Cloned MDP M ′ = (S,A, p, 0, γ′)
=⇒ learn E?(s, a) := Q?M ′(s, a) = 0
(exploration)

Exploration bonus

rit =

√
1

− logEt(st, at)

Idea:
learn E? online starting from E0(s, a) = 1

The E-value should converge to 0 (Ek → 0)

Then, Ek(s, a) > 0 represents the prediction error , i.e., uncertainty about the
value of state (s, a)

logE can be seen as a generalized count
- use any preferred method to learn E with function approximation
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DORA
[Fox et al., 2018]

60

Consider two MDPs
Original MDP M = (S,A, p, r, γ)
=⇒ learn Q?M (s, a) (task objective)

Cloned MDP M ′ = (S,A, p, 0, γ′)
=⇒ learn E?(s, a) := Q?M ′(s, a) = 0
(exploration)

Exploration bonus

rit =

√
1

− logEt(st, at)

Idea:
learn E? online starting from E0(s, a) = 1

The E-value should converge to 0 (Ek → 0)

Then, Ek(s, a) > 0 represents the prediction error , i.e., uncertainty about the
value of state (s, a)

logE can be seen as a generalized count
- use any preferred method to learn E with function approximation
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Random Network Distillation (RND)
61

Randomly initialize two instances of the same NN (target θ∗ and prediction θ0)

fθ∗ : S → R; fθ : S → R

Train the prediction network minimizing loss w.r.t. the target network

θn = arg min
θ

n∑
t=1

(
fθ(st)− fθ∗(st)

)2
Build “intrinsic” reward

rit =
∣∣∣fθ(st)− fθ∗(st)∣∣∣

- No model misspecification (fθ can exactly predict fθ∗)
- Influence of learning dynamics can be reduced
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Random Network Distillation (RND)
62
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Random Network Distillation (RND)
[Burda et al., 2019b]

63

General architecture
Separate extrinsic rEt and intrinsic reward rIt
PPO (or any other approach) with two heads to estimate V I and V E

Greedy policy w.r.t. V I + cV E

“Tricks”
Rewards should be in the same range
Use different discount factors for intrinsic and extrinsic rewards
Non-episodic setting results in better exploration
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Random Network Distillation (RND)
[Burda et al., 2019b]

64

Montezuma!

finds 22 out of the 24 rooms on the first level

Pirotta

https://www.youtube.com/watch?v=40VZeFppDEM


Comparison
[Taïga et al., 2019]
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Comparison: not all problems require same amount of exploration
[Taïga et al., 2019]
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Exploration in Deep RL: Outline
67
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Exploration Issues in Deep RL

2 Exploration Bonus
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4 Randomized Exploration

5 Conclusions
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Exploration Bonus: Issues
68

Non-stationary

Controllability/Predictability
“agent finds a way to instantly gratify itself by exploiting actions which lead to
hardly predictable consequences” – [Savinov et al., 2019]

Knowledge fading
“after the novelty of a state has vanished, the agent is not encouraged to visit
it again, regardless of the downstream learning opportunities it might allow” –
[Badia et al., 2020b]

Representation learning intertwined with exploration

Few of these problems are addressed through memory (i.e., buffer)
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Exploration in Deep RL: Outline
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Episodic Curiosity
[Savinov et al., 2019]

70

The novelty bonus rit depends on reachability of states
i.e., give a reward only for those observations which take some effort to reach (outside the
known region)

Reachability = # steps between states

Components:
1 State embedding
2 Comparator

(i.e., reachability predictor)

3 Episodic Memory
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Episodic Curiosity: Embedding and Reachability
71

Reachability is formulated as binary classification problem

C
(
φ(si), φ(sj)

)
7→ [0, 1]
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Episodic Curiosity: Memory
72

Stores embeddings of past observations from the current episode

M =
{
φ(st)

}
t

Reinitialized at the beginning of each episode

Limited capacity

φ(st) is added to M only if novelty (bonus) is high enough
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Episodic Curiosity: Bonus
73

C(M,φ(st)) similarity score between the memory buffer and the current
embedding (may depend on all samples in M)
α and β are hyper-paramenters

rit = α(β − C(M,φ(st)))
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Vanishing Novelty? Never Give Up
74

rt = ret︸︷︷︸
extrinsic reward (standard)

+ β rit︸︷︷︸
intrinsic

Intrinsic reward should capture [Badia et al., 2020b]
1 Long-term novelty

reward encourages visiting states throughout training (across episodes)
2 Short-term novelty

reward encourages visiting states over a short horizon (e.g., within an episode)
ignores inter-episode interactions
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Never Give Up: intrinsic reward
[Badia et al., 2020b]

75

rit = repisodic
t ·min

{
max{ αt , 1}, L

}

per-episode novelty
(short-term)

life-long novelty
(long-term)

Properties:
Rapidly discourages revisiting states in an episode
Slowly discourages revisiting frequent states across episodes
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Never Give Up: short-term novelty
76

Episodic memory: to store the controllable
states in an online fashion

M =
{
φ(s0), φ(s1), . . . , φ(st−1)

}

φ is an IDF (inverse dynamics features)
embedding of the observation
same as feature encoding in ICM

φ
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Never Give Up (NGU): short-term novelty
77

Frequency-based exploration inside the episode

repisodict =
1√

n(φ(st))
≈ 1√∑

φi∈Nt
k
Ker(φ(st), φi) + c

with N t
k being the k-nearest neighbors of φ(st) in memory M

φ

* Ker(x, y) =
ε

d2(x,y)

d2m
+ ε

where d = `2 and dm is a running average

of the squared `2 distance of the k nearest neighbors
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Never Give Up (NGU): long-term novelty
78

Random Network Distillation [Burda et al., 2019b]

αt = 1 +
errRND(st)− µe

σe

σe and µe are running standard deviation and mean for errRND(st)
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Never Give Up (NGU): population training
79

Multi-task setting: (population based, auxiliary tasks, ...)
Learn simultaneously a family of problems (Mj) by approximating Q(s, a;Mj)

(Mi) same dynamics but different rewards

r
Mj

t = ret + βjr
i
t

with β0 = 0 < . . . < βN−1 = βmax

and discount factors γ0 = γ > . . . > γN−1
in the paper γ0 = 0.997, and γN−1 = 0.99
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Beyond NGU: Agent57
[Badia et al., 2020a]

80

Agent57 builds on NGU but uses a new

1 State-Action Value Function Parameterization

2 Adaptive Exploration over a Family of Policies (meta controller)
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Super-human Performance
81

“[Agent57 is the] first deep reinforcement learning agent to obtain a score that is above the
human baseline on all 57 Atari 2600 games.”
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Frames to human performance
82
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Agent57: changes in Q
83

Reparametrization

Q(s, a, j; θ) = Q(s, a, j; θe)︸ ︷︷ ︸
extrinsic

+ βj Q(s, a, j; θi)︸ ︷︷ ︸
intrinsic

, θ = {θe, θi}

Qe and Qi have identical architecture

Optimized using transformed Retrace loss (as NGU)
• Optimized separately based on re and ri respectively
• But same target policy π(s) = arg max

a
Q(s, a, j; θ)

* new compared to NGU. Note that [Burda et al., 2019b] used two heads for extrinsic and
intrinsic value function, with a shared architecture.
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Agent57: meta-controller
84

NGU issue:
all policies (i.e., models (Mj)) are trained equally, regardless of their contribution
to the learning progress
expected that higher βj and lower γj do better in the early stages, and opposite
later

Solution:
meta-controller to prioritize what to learn
=⇒ sort of automatic curriculum learning

use non-stationary multi-arm bandit algorithm [e.g., sliding-window UCB]

non-stationary? Agent57 is also learning the policy of each task
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Performance on 10 hard games
85

six hard exploration games, plus games that require long-term credit assignment.
Beam Rider, Freeway, Montezuma’s Revenge, Pitfall!, Pong, Private Eye, Skiing, Solaris, Surround, and Venture

Video
Pirotta
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Direct Exploration
[Ecoffet et al., 2019, 2021]

88

Recall a few issues of intrinsic exploration:

Forget about promising areas they have visited

They do not return to them for further exploration

Green areas indicate
intrinsic reward, white
indicates areas where
no intrinsic reward re-
mains, and purple areas
indicate where the al-
gorithm is currently
exploring.

­ It would be good to keep in memory unexplored states and target them
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Go-Explore: Phases
[Ecoffet et al., 2019, 2021]
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¬ Exploration
­ Robustification
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Go-Explore: phases ¬
90

Steps:
Select a state φ(s) from memory M
e.g., by relevance (IM, novelty, etc.)

Go to a state φ(s)

Explore locally (e.g., randomly)
Store embedding φ(s′) in M
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Go-Explore: phases ­
91

Robustification against noise
Learning from Demonstrations (i.e., imitation learning)
requires to store the highest-scoring trajectories
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Intuition: discover and control
92

Discover states
This is done by random exploration around the targeted state

Control states
This is obtained by the incremental approach

o Most challenging aspect is reaching the selected state in phase ¬

* similar to theoretical approaches for autonomous exploration [e.g., Lim and Auer, 2012,
Tarbouriech et al., 2020]
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Reaching a State
[Ecoffet et al., 2019, 2021]

93

A○ – Resetting the simulator
Strong assumption
Leverage determinism through the simulator
Based on replaying actions

B○ – Goal-Oriented policy
Generic setting
Learn policies aiming to reach a specific state
learn goal-dependent quantities, e.g., Q(s, a; g) or π(s, a; g)

They train π(s, a; g) based on the best trajectory that led to such a goal g +
imitation-learning
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Results with Simulator Reset
94
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Results with Simulator Reset - cont’d
95

Video
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Results with Goal-Oriented Policy
96
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Other Approaches for Direct Exploration
97

[Guo et al., 2020] (DTSIL)
keep trajectories and train a goal/trajectory oriented policy by imitation learning

[Guo and Brunskill, 2019]
learn goal-conditioned policy to directly reach highly-uncertain states
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Randomized Exploration
General Scheme inspired by Thompson Sampling

99

1 Estimate the parameters θ for either policy or value function
2 Add randomness to the parameters θ̃ = θ + noise
3 Run the corresponding (greedy) policy

Remark: changing weights induces a consistent, and potentially very complex,
state-dependent change in policy over multiple time steps
=⇒ long-term exploration
=⇒ no dithering

­ The randomness needs to represent “uncertainty”
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Exploration via Randomization
100

Perturb observed rewards
store samples (s, a, s′, r + noise) run an RL algorithm on the perturbed data

Perturb parameters (e.g., based on posterior uncertainty)
leverage uncertainty on the prediction

Randomized Value Function (RVF) [Osband et al., 2019, 2018, Azizzadenesheli et al.,
2018, Lipton et al., 2018, Touati et al., 2019, Osband et al., 2019]
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RVF: issues
101

Reward Perturbation
Minimize least-squares problem for any reward structure
e.g., by gradient descent
Not so easy to define the magnitude of the reward perturbation

Posterior Sampling
Posterior variance
• easy for linear model
• hard (almost impossible) for generic models

A lot of approximate schemas for computing the posterior
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Posterior Distribution for Deep Neural Networks
Bayesian DQN [Azizzadenesheli et al., 2018]

102

1 Bayesian linear regression with given feature φ(s) ∈ Rd
and given target vector for each action ya

µa = (ΦT
aΦa)

−1ΦT
a ya Σa = ΦT

aΦa

2 Draw a weight vector at random wa ∼ N
(
µa,Σ

−1
a

)
3 Run the corresponding (greedy) policy
at = arg max

a
Q(st, a) := arg max

a
wT
a φ(st)

4 Train φ with standard NN to estimate Q

o Same tools as in linear bandit
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Posterior Distribution for Deep Neural Networks
103

BBQ-Networks [Lipton et al., 2018]
Uses variational inference to quantify uncertainty
Uses independent factorized Gaussians as an approximate posterior

MNF-DQN [Touati et al., 2019]
Leverages recent advances in variational Bayesian NN
Computationally and statistically efficient
Uses normalizing multiplicative flows (MNF) in order to account for the
uncertainty of estimates for efficient exploration
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Bootstrap DQN
[Osband et al., 2016]

104

DQN + bootstrapping ≈ Thompson sampling

Define multiple value functions Qk
Update functions with different
datasets
Share part of the architecture

another way of approximating a sample from posterior
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Bootstrap DQN
[Osband et al., 2016]

105

Mt determines the type of bootstrapping strategy

gkt = mk
t

(
yQt −Qk(st, at; θ)

)
∇θQk(st, at, ; θ)

with target yt = rt + max
a

Q(st+1, a; θ−)
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Randomized Prior Functions
[Osband et al., 2018]

106

Bayesian perspective: “generate posterior samples by training on noisy versions of the
data, together with some random regularization”

Randomized Prior + Bootstrapped DQN
Train an ensemble of models, each on perturbed versions of the data
The resulting distribution of the ensemble is used to approximate the uncertainty
in the estimate

L(θ; θ−, p,D) =
∑
t∈D

(
rt + γmax

a′
(Qθ−+p)(s′t, a

′)− (Qθ+p)(st, at)

)
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Noisy Networks
[Fortunato et al., 2018]

107

Normal NN layer y = wx+ b

Double the parameters with mean and variance

w → µw, σw and b→ µb, σb

Whenever a layer is evaluated draw εw, εb ∼ D
Evaluate the “random” layer as

y = (µw + σw � εw) + µb + σb � εb

Let ζ = (µw, σw, µb, σb), define the expected loss

L(ζ) = Eε
[
L(ζ, ε)

]
Gradient estimation update
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Noisy Networks: noise models
[Fortunato et al., 2018]

108

Independent noise εi,j for each weight i at layer j

Factorized noise εi,j = f(εi)f(εj) (e.g., f(x) = sgn(x)
√
x)

Independent noise for target and online networks

yt = rt + max
a′

Q(s′t, a
′; ε′, ζ−); Lt(ζ, ε) = (yt −Q(st, at; ε, ζ)

)2
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Comparison
[Touati et al., 2019]
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Simple Chain domain
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Comparison: Atari
[Touati et al., 2019]
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Comparison: Atari
[Touati et al., 2019]
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Exploration in Deep RL
113

Several different techniques (we have seen only a small part)
No general solution

Exploration needs to account for uncertainty in the predictions
Should account for long-term effect

Exploration at the level of (value/policy/model) parameters
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What is not covered here?
114

Information Gain

Exploration via options

Task-agnostic exploration

Multi-task settings

Meta learning

Pirotta
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