facebook Artificial Intelligence Research

Exploration-Exploitation in Reinforcement Learning Part 4 – Regret Minimization in Continuous MDPs

Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta Facebook AI Research

Outline

Adaptive Q-Learning

2 Linear Structure

- Low-Rank MDPs
- LQR

Website

https://rlgammazero.github.io

facebook Artificial Intelligence Research

History: Regret Minimization in Smooth MDPs

facebook Artificial Intelligence Research

3

Smooth Problems

 $\mathcal{S} \times \mathcal{A}$ is a compact metric space

d[(s,a),(s',a')] is a metric on $\mathcal{S}\times\mathcal{A}$

 Q^* is a smooth function: $\forall (s, a, s', a')$ and $\forall h \in [H]$

$$|Q_h^{\star}(s,a) - Q_h^{\star}(s',a')| \le L_{q,h} d[(s,a), (s',a')]$$

Examples

- Discrete and continuous state-action spaces
- Deterministic systems with metric structure
- Stochastic systems with regularity assumptions on the transitions

Smooth MDPs

- A smooth continuous MDP has
 - \blacksquare \mathcal{S}, \mathcal{A} measurable spaces
 - **Transitions and rewards are "smooth"**: $\forall (s, a, s', a')$ and $\forall h \in [H]$

$$e.g., \text{ Total Variation} \begin{array}{l} d_M \left[p_h(\cdot|s,a), p_h(\cdot|s',a') \right] \leq \lambda_p \ d\left[(s,a), (s',a') \right] \\ |r_h(s,a) - r_h(s',a')| \leq \lambda_r \ d\left[(s,a), (s',a') \right] \\ \text{(TV) or Wasserstein} \end{array}$$

 $m \ref{D}$ Total Variation Liptschitz \implies Wasserstein Lipschitz [Gibbs and Su, 2002]

facebook Artificial Intelligence Research

Lower-Bound in Metric Space

Theorem (Sinclair et al. [2019])

Consider a metric space $S \times A$ such that $diam(S \times A) \leq d_{max}$. Let d_c be the covering dimension with parameter c of the space $S \times A$

$$d_c = \inf \left\{ d \ge 0 \mid N_r \le cr^{-d}, \forall r \in (0, d_{\max}] \right\}$$

where N_r is the packing number.

Then there exists a distribution over problem instances such that for any algorithm, the regret is at least

$$\Omega\left(H^{3/2}K^{(d_c+1)/(d_c+2)}c^{1/(d_c+2)}\right)$$

Adapted from RL [Jin et al., 2018] and the contextual bandit case [Slivkins, 2014]

Online Learning in Smooth Problems

Model-based

- Estimate both p and r
 - + Counterfactual reasoning Computational complexity
- Optimism: [Ortner and Ryabko, 2012, Lakshmanan et al., 2015, Qian et al., 2019]*
- Randomization: ?

Model-free algorithms

- Eschew learning transitions and only focus on learning good state-action mappings + No need of planning Estimate only Q^*
- Optimism: Q-learning $\widetilde{\mathcal{O}}(H^{5/2}K^{(d+1)/(d+2)})$ [Song and Sun, 2019, Sinclair et al., 2019]
- Randomization: ?

*Not reporting bounds because in infinite-horizon and/or slightly different assumptions.

facebook Artificial Intelligence Research

Solution Methods

■ Uniform discretization (e.g., *e*-net)

[Ortner and Ryabko, 2012, Lakshmanan et al., 2015, Qian et al., 2019, Song and Sun, 2019]

Adaptive discretization (e.g., zooming)

adapt the discretization over space and time in a data-driven manner [Sinclair et al., 2019]

* figure by Sinclair et al. [2019]

Find online the maximum of a function f. Assume f is Lipschitz: $|f(x) - f(y)| \le d(x, y)$.

- At each time step t, select x_t
- Observe $f(x_t)$
- Goal: maximize sum of $f(x_t)$

Evaluating f at a point x provides an upper-bound (f is Lipschitz)

* example from [Munos, 2013]

facebook Artificial Intelligence Research

Refine upper-bound What point to select? *Optimism*

* example from [Munos, 2013]

facebook Artificial Intelligence Research

We have noisy observations. How to define high-probability upper-bound?

* example from [Munos, 2013]

facebook Artificial Intelligence Research

Fix a ball B_i (interval in 1D) containing n_i points $\{x_t\}$. Then, $\forall y \in B_i$

$$\frac{1}{n_i} \sum_{t=1}^{n_i} r_t + \sqrt{\frac{\log 1/\delta}{2n_i}} \ge \frac{1}{n_i} \sum_{t=1}^{n_i} f(x_t) \ge f(y) - diam(B_i)$$

since f is Lipschitz

* example from [Munos, 2013]

facebook Artificial Intelligence Research

How to increase accuracy? Increase granularity over time (tree structure) Split is a trade-off between confidence interval and ball radius bias-variance trade-off

* example from [Munos, 2013]

facebook Artificial Intelligence Research

^{*} example from [Munos, 2013]

* example from [Munos, 2013]

^{*} example from [Munos, 2013]

^{*} example from [Munos, 2013]

^{*} example from [Munos, 2013]

* example from [Munos, 2013]

facebook Artificial Intelligence Research

* example from [Munos, 2013]

facebook Artificial Intelligence Research

* example from [Munos, 2013]

Adaptive Optimistic Q-Learning (AdOpt-QL) [Sinclair et al., 2019]

Uses *hierachical covering* of state-action space

- Starts from a single partition covering all the space
- Adapts the granularity of the partition based on rewards and visits

$$\mathcal{P}_{hk} = \{B_i\} : \mathcal{S} \times \mathcal{A} \subseteq \bigcup_i B_i$$

- For each ball B we store
 - An optimistic estimate Q_h(B) of Q^{*}
 - A visit counter $N_h(B)$

AdOpt-QL

AdOpt-QL: Action Selection

- Traverse the hierachical structure based on Q and s_{hk}
- Optimistic selection of the ball
- $B = \arg \max_{\overline{B}} Q_h(\overline{B})$ such that $s_{hk} \in B$ Play random action in B

* figure from [Bubeck et al., 2011]

facebook Artificial Intelligence Research

AdOpt-QL: Uncertainty

$$\alpha_t = \frac{H+1}{H+t} \text{ as in [Jin et al., 2018]}$$

$$Q_h^{k+1}(B) = (1 - \alpha_t) Q_{hk}(B) + \alpha_t (r_h + b_h(t) + V_{h+1}^k(s_{h+1}))$$

$$\downarrow \text{exploration bonus}$$

$$b_h(t) = 2\sqrt{\frac{H^3 \log(4HK/\delta)}{t}} + \underbrace{\frac{d_{\max}L_{q,h}}{\sqrt{t}}}_{\text{discretization error}}$$

• $t = N_{hk}(B) + 1$ i.e., number of visits

 $I diam(\mathcal{S} \times \mathcal{A}) \leq d_{\max}$

AdOpt-QL: Refining the Partition

If
$$N_h^{k+1}(B) \ge \left(\frac{d_{\max}}{radi(B)}\right)^2$$
 then
Split ball
Cover $dom(B)$ using a $\frac{1}{2}radi(B)$ -net

${\rm sc}$ when the number of samples is large, variance dominates the bias \implies better to split

 $m \ref{eq:constraint}$ new balls inherit properties of the parent ball

Theorem (Thm. 4.1 by Sinclair et al. [2019])

For any smooth MDP with L_{qh} -Lipschitz Q-function and non-stationary transitions, AdOpt-QL, with high probability, suffers a regret

$$R(K, M^{\star}, \text{AdOpt-QL}) = \widetilde{\mathcal{O}}\left(c^{1/(d_c+2)} H^{5/2} K^{(d_c+1)/(d_c+2)}\right)$$

• Order optimal in c and K

Factor *H* worse than the lower-bound

🖒 same bound for [Song and Sun, 2019] with uniform discretization

facebook Artificial Intelligence Research

1 Smooth MDPs

2 Linear Structure

facebook Artificial Intelligence Research

Linear Function Approximation

Action-value functions

- Feature map $\phi_h : \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$
- Function approximation $Q_h(s, a) = \phi_h(s, a)^{\mathsf{T}} \theta_h$

Input: Dataset
$$\mathcal{D}_{k} = (s_{hi}, a_{hi}, r_{hi})_{h=1,i=1}^{H,k}$$

Set $\theta_{H+1} = 0$ and $\hat{Q}_{H+1}(s, a) = \phi_{H+1}(s, a)^{\mathsf{T}}\theta_{H+1}$
for $h = H, \dots, 1$ do // backward induction
Compute
 $y_{hi} = r_{hi} + \max_{a \in \mathcal{A}} \hat{Q}_{h+1,k}(s_{h+1,i}, a) = r_{hi} + \hat{V}_{h+1,k}(s_{h+1,i}), \quad i = 1, \dots, k$
Build regression dataset $\mathcal{D}_{h}^{\mathsf{reg}} = \{\phi_{h}(s_{hi}, a_{hi}), y_{hi}\}_{i}$
Compute
 $\Sigma_{hk} = \sum_{i=1}^{k} \phi_{h}(s_{hi}, a_{hi})\phi_{h}(s_{hi}, a_{hi})^{\mathsf{T}} + \lambda I, \qquad \Omega_{hk} = \sum_{i=1}^{k} \phi_{h}(s_{hi}, a_{hi})y_{hi}$
 $\hat{\theta}_{hk} = \arg\min_{\theta} \frac{1}{k} \sum_{i=1}^{k} (y_{hi} - \phi_{h}(s_{hi}, a_{hi})^{\mathsf{T}} \theta)^{2} + \lambda ||\theta||_{2}^{2}$
 $= \sum_{hk}^{-1} \Omega_{hk}$
end

return $\{\widehat{\theta}_{hk}\}_{h=1}^{H}$

facebook Artificial Intelligence Research

Bad News

Theorem ([Du et al., 2019])

Let assume that ϕ_h approximates well the action-value function of any policy π

$$\min_{\theta} \|Q_h^{\pi}(\cdot) - \phi_h(\cdot)^{\mathsf{T}} \theta\|_{\infty} \le \epsilon.$$

There exists an MDP such that any algorithm that returns a 1/2-optimal policy with 0.9 probability requires

$$T \ge \Omega\left(\min\{|\mathcal{S}|, 2^H, \exp(d\epsilon^2/16)\}\right)$$

[Baird, 1995] counter-examples for LSVI-like algorithms

facebook Artificial Intelligence Research

Theorem ([Lattimore and Szepesvári, 2019])

Let assume that ϕ_h approximates well the action-value function of any policy π

$$\min_{\theta} \|Q_h^{\pi}(\cdot) - \phi_h(\cdot)^{\mathsf{T}} \theta\|_{\infty} \le \epsilon.$$

Approximate policy iteration using a generative model returns a $O(\epsilon\sqrt{d})$ -optimal policy with

$$T \le \widetilde{O}\left(\frac{d}{\epsilon^2}\right)$$

Theorem ([Lattimore and Szepesvári, 2019])

Let assume that ϕ_h approximates well the action-value function of any policy π

$$\min_{\theta} \|Q_h^{\pi}(\cdot) - \phi_h(\cdot)^{\mathsf{T}} \theta\|_{\infty} \le \epsilon.$$

Approximate policy iteration using a generative model returns a $O(\epsilon\sqrt{d})$ -optimal policy with

$$T \le \widetilde{O}\left(\frac{d}{\epsilon^2}\right)$$

$\mathbf{\nabla}$ API vs LSVI, generative model vs RL

facebook Artificial Intelligence Research

Some Good News Low-Rank MDPs [Yang and Wang, 2019a]

A low-rank (linear) MDP $M = \langle S, A, \phi_h, r_h, p_h, H \rangle$

- $\blacksquare \ \mathcal{S} \times \mathcal{A} \text{ is a measurable space}$
- Dynamics is low rank, $\psi_h : \mathcal{S} \to \mathbb{R}^d$

$$p_h(s'|s,a) = \phi_h(s,a)^\mathsf{T} \psi_h(s')$$

Reward has linear structure, $heta_h^r \in \mathbb{R}^d$

$$r_h(s,a) = \phi_h(s,a)^\mathsf{T} \; \theta_h^r$$

🖒 examples are tabular MDPs, simplex feature space (e.g., mixture models)

This is a generalization of Linear Contextual Bandits [Lattimore and Szepesvári, 2018]

facebook Artificial Intelligence Research

For every policy $\pi = (\pi_1, \ldots, \pi_H)$ and $h \in [H]$, Q_h^{π} is linear in ϕ_h

$$\begin{split} Q_h^{\pi}(s,a) &= r_h(s,a) + \mathbb{E}_{s'|s,a}[V_{h+1}^{\pi}(s')] \\ &= \phi_h(s,a)^{\mathsf{T}} \theta_h^r + \int_{s'} \phi_h(s,a)^{\mathsf{T}} \psi_h(s') V_{h+1}^{\pi}(s') \mathrm{d}s' \\ &= \phi_h(s,a)^{\mathsf{T}} \underbrace{\left(\theta_h^r + \int_{s'} \psi_h(s') V_{h+1}^{\pi}(s') \mathrm{d}s'\right)}_{independent \ from \ (s,a)} \\ &= \phi_h(s,a)^{\mathsf{T}} \theta_h^{\pi} \end{split}$$

A very strong structure!

any function V_{h+1}^{π} is transformed into a linear function by the Bellman operator

facebook Artificial Intelligence Research

f A Assumption: MDP is approximately low-rank w.r.t. features ϕ_h

Model-based

- Optimism: $\widetilde{\mathcal{O}}(H^2 d^{3/2} \sqrt{T})$ [Yang and Wang, 2019b]*
- Randomization: ?

Model-free

- Optimism: Opt-LSVI $\widetilde{\mathcal{O}}(H^{3/2}d^{3/2}\sqrt{T})$ [Jin et al., 2019]**
- **•** Randomization: Opt-RLSVI $\widetilde{\mathcal{O}}(H^2 d^2 \sqrt{T})$ [Zanette et al., 2019]***

*Depending on further (light) assumptions can be improved from $d^{3/2}$ to d**If the MDP is ϵ -low-rank, additional term $\tilde{O}(\epsilon dHT)$ ***If the MDP is ϵ -low-rank, additional term $\tilde{O}(\epsilon dHT(1 + \epsilon dH^2))$

facebook Artificial Intelligence Research

f A Assumption: MDP is approximately low-rank w.r.t. features ϕ_h

Model-based

- Optimism: $\widetilde{\mathcal{O}}(H^2 d^{3/2} \sqrt{T})$ [Yang and Wang, 2019b]*
- Randomization: ?

Model-free

- Optimism: Opt-LSVI $\widetilde{\mathcal{O}}(H^{3/2}d^{3/2}\sqrt{T})$ [Jin et al., 2019]**
- **•** Randomization: Opt-RLSVI $\widetilde{\mathcal{O}}(H^2 d^2 \sqrt{T})$ [Zanette et al., 2019]***

🖒 continuous MDPs, approximate low-rank, model-free

```
*Depending on further (light) assumptions can be improved from d^{3/2} to d
**If the MDP is \epsilon-low-rank, additional term \widetilde{\mathcal{O}}(\epsilon dHT)
***If the MDP is \epsilon-low-rank, additional term \widetilde{\mathcal{O}}(\epsilon dHT(1 + \epsilon dH^2))
```

facebook Artificial Intelligence Research

f A Assumption: MDP is approximately low-rank w.r.t. features ϕ_h

Model-based

- Optimism: $\widetilde{\mathcal{O}}(H^2 d^{3/2} \sqrt{T})$ [Yang and Wang, 2019b]*
- Randomization: ?

Model-free

- Optimism: Opt-LSVI $\widetilde{\mathcal{O}}(H^{3/2}d^{3/2}\sqrt{T})$ [Jin et al., 2019]**
- **•** Randomization: Opt-RLSVI $\widetilde{\mathcal{O}}(H^2 d^2 \sqrt{T})$ [Zanette et al., 2019]***

☆ continuous MDPs, approximate low-rank, model-free
 ♀ not "that" scalable, strong assumption (see later)

```
*Depending on further (light) assumptions can be improved from d^{3/2} to d
**If the MDP is \epsilon-low-rank, additional term \widetilde{\mathcal{O}}(\epsilon dHT)
***If the MDP is \epsilon-low-rank, additional term \widetilde{\mathcal{O}}(\epsilon dHT(1 + \epsilon dH^2))
```

Lower-Bound for Low Rank MDPs

Theorem ([Jin et al., 2019])

For any low-rank MDP M^* , any algorithm \mathfrak{A} suffers at least a regret

 $R(K, M^{\star}, \mathfrak{A}) = \Omega(d^{1/2}H\sqrt{T})$

OptLSVI [Jin et al., 2019]

Input: ϕ_h

```
Initialize Q_{h1}(s,a) = 0 for all (s,a) \in S \times A and h = 1, \dots, H, \mathcal{D}_1 = \emptyset
```

```
for k = 1, ..., K do // episodes

Observe initial state s_{1k} (arbitrary)

Run LSVI with UCB on \mathcal{D}_k

for h = 1, ..., H do

Execute a_{hk} = \pi_{hk}(s_{hk}) = \arg \max_a \widehat{Q}_{hk}(s_{hk}, a)

Observe r_{hk} and s_{h+1,k}

end

Add trajectory (s_{hk}, a_{hk}, r_{hk})_{h=1}^H to \mathcal{D}_{k+1}

end
```

LSVI with Upper-Confidence Bounds

Input: Dataset $\mathcal{D}_k = (s_{hi}, a_{hi}, r_{hi})_{h=1}^{H,k}$ Set $\theta_{H+1} = 0$ and $\widehat{Q}_{H+1}(s, a) = \phi_{H+1}(s, a)^{\mathsf{T}} \theta_{H+1}$ for $h = H, \ldots, 1$ do // backward induction Compute $u_{hi} = r_{hi} + \widehat{V}_{h+1,k}(s_{h+1,i}), \ i = 1, \dots, k$ Build regression dataset $\mathcal{D}_{h}^{\mathsf{reg}} = \{\phi_{h}(s_{hi}, a_{hi}), y_{hi}\}_{i}$ Compute $\Sigma_{hk} = \sum_{i=1}^{k} \phi_h(s_{hi}, a_{hi}) \phi_h(s_{hi}, a_{hi})^{\mathsf{T}} + \lambda I, \qquad \Omega_{hk} = \sum_{i=1}^{k} \phi_h(s_{hi}, a_{hi}) y_{hi}$ $\widehat{\theta}_{hk} = \Sigma_{hk}^{-1} \Omega_{hk}$ Add uncertainty $\widehat{Q}_{hk}(s,a) = \phi_h(s,a)^{\mathsf{T}} \widehat{\theta}_{hk} + b_{hk}(s,a)$ Set $\widehat{V}_{hk}(s) = \min\left\{H, \max_{a \in A} \widehat{Q}_{hk}(s, a)\right\}$ end

return $\{\widehat{\theta}_{hk}\}_{h=1}^{H}$

facebook Artificial Intelligence Research

Measuring Uncertainties

Theorem (Lem. B.4-B.5 of [Jin et al., 2019])

Consider the filtration composed by the history generated by the algorithm at any point during its runtime. If $\|\phi_h(s,a)\|_2 \leq L_{\phi}$, $\|\theta_h^r\|_2 \leq L_r$ and $\int_s \|\psi_h(s)\|_2 \leq L_{\psi}$, then with probability at least $1 - \delta$, for all (s, a, h, k), we have

$$\left|\phi_h(s,a)^{\mathsf{T}}\widehat{\theta}_h^k - Q_h^\star(s,a)\right| \le \alpha_k \sqrt{\phi_h(s,a)^{\mathsf{T}} \Sigma_{hk}^{-1} \phi_h(s,a)} := b_{hk}(s,a)$$

where

$$lpha_k \propto dH \sqrt{\log\left(\frac{dHkL_{\phi}L_{\psi}L_r\lambda}{\delta}
ight)} + \sqrt{\lambda}L_{\phi}L_{ heta}$$

 $|\phi_h(s,a)||_{\Sigma_{hk}^{-1}}$ measures the correlation between $\phi_h(s,a)$ and the features observed so far

OptLSVI: Regret

Theorem

Let $\lambda = 1$, $L_{\psi} = L_r = \sqrt{d}$ and $L_{\phi} = 1$. For any ϵ low rank MDP M w.r.t. features ϕ_h , OptLSVI with $\alpha_k = O(dH + \epsilon H \sqrt{dk})$, with high probability, suffers a regret

$$R(K, M^*, OptLSVI) = \mathcal{O}\left(d^{3/2}H^{3/2}\sqrt{T} + \epsilon dHT\right)$$

- Order optimal \sqrt{T}
- Factor $d\sqrt{H}$ worse than the lower-bound
- Linear dependence in ϵ

ID √H might be saved by moving from Hoeffding to Bernstein bound see tabular RL [e.g., Azar et al., 2017]
 IQ we don't know a Bernstein bound for the Least-Square estimator

Randomized Least-Squares Value Iteration (RLSVI) [Osband et al., 2016]

Input: ϕ_h

```
Initialize Q_{h1}(s,a) = 0 for all (s,a) \in S \times A and h = 1, \dots, H, \mathcal{D}_1 = \emptyset
```

```
for k = 1, ..., K do // episodes

Observe initial state s_{1k} (arbitrary)

Run RLSVI on \mathcal{D}_k

for h = 1, ..., H do

Execute a_{hk} = \pi_{hk}(s_{hk}) = \arg \max_a \widehat{Q}_{hk}(s_{hk}, a)

Observe r_{hk} and s_{h+1,k}

end

Add trajectory (s_{hk}, a_{hk}, r_{hk})_{h=1}^H to \mathcal{D}_{k+1}

end
```

Randomized LSVI

Randomized LSVI

facebook Artificial Intelligence Research

Randomized LSVI

39

Randomized Least-Squares Value Iteration (RLSVI)

Input: Dataset $\mathcal{D}_k = (s_{hi}, a_{hi}, r_{hi})_{h=1}^{H,k}$ Bootstrapping randomized Set $\theta_{H+1} = 0$ and $\overline{Q}_{H+1}(s, a) = \phi_{H+1}(s, a)^{\mathsf{T}} \theta_{H+1}$ estimates for $h = H, \ldots, 1$ do // backward induction Compute $\overline{y}_{hi} = r_{hi} + \max_{a \in A} \overline{Q}_{h+1,k}(s_{h+1,i}, a) = r_{hi} + \overline{V}_{h+1,k}(s_{h+1,i}), \ i = 1, \dots, k$ Build regression dataset $\mathcal{D}_{h}^{\mathsf{reg}} = \{\phi_{h}(s_{hi}, a_{hi}), \overline{y}_{hi}\}_{i}$ Compute $\widehat{\theta}_{hk} = \sum_{hk}^{-1} \overline{\Omega}_{hk}; \qquad \overline{\Omega}_{hk} = \sum_{i=1}^{k} \phi_h(s_{hi}, a_{hi}) \overline{y}_{hi}$ Sample $\xi_{hk} \sim \mathcal{N}(0, \sigma^2 \Sigma_{hk}^{-1})$ Set $\overline{\theta}_{hk} = \widehat{\theta}_{hk} + \xi_{hk}$ end return $\{\overline{\theta}_{hk}\}_{h=1}^{H}$

40

RLSVI as Regression on Perturbed Data [Osband et al., 2019, Russo, 2019]

Bayesian Update

- True parameter is $\theta^{\star} \in \mathbb{R}^d \Rightarrow$ we want to estimate it
- Assume Gaussian prior $\mathcal{N}(\overline{\theta}, \lambda I)$
- Dataset $\mathcal{D} = (x_i, y_i)_{i=1}^N$, where

$$y_i = x_i^{\mathsf{T}} \theta + \epsilon_i \quad , \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Conditional *posterior*

$$\theta^{\star} | \mathcal{D} \sim \underbrace{\mathcal{N}\left(\Sigma^{-1}\left(\frac{1}{\sigma^{2}}X^{\mathsf{T}}y + \frac{1}{\lambda}\overline{\theta}\right), \Sigma^{-1}\right)}_{:=\mu_{p}}$$

RLSVI as Regression on Perturbed Data

• We can sample μ_p by fitting a least-squares estimate $\widehat{\theta} = \arg\min_{\theta} \frac{1}{\sigma^2} \sum_{i=1}^{N} \left(y_i + \omega_i - x_i^{\mathsf{T}} \theta \right) + \frac{1}{\lambda} \| \widetilde{\theta} - \theta \|_2^2$ Sample from

 $\Rightarrow \hat{\theta} \sim \mu_p$

Sample from prior $\widetilde{\theta} \sim \mathcal{N}(\overline{\theta}, \lambda I)$

RLSVI as Regression on Perturbed Data

• We can sample μ_p by fitting a least-squares estimate

$$\widehat{\theta} = \arg\min_{\theta} \frac{1}{\sigma^2} \sum_{i=1}^{N} \left(y_i + \omega_i^{\mathsf{T}} - x_i^{\mathsf{T}} \theta \right) + \frac{1}{\lambda} \| \widetilde{\theta} - \theta \|_2^2$$

$$\underset{\widetilde{\theta} \sim \mathcal{N}(\overline{\theta}, \lambda I)}{\overset{\mathsf{Sample from prior}}{\overset{\mathsf{Sample from pri$$

For linear models,

poster sampling = regularized least-squares on perturbed data

For tabular MDPs, $x_i = e_{s,a}$ and $\theta = Q$ backward induction on randomized rewards = RLSVI

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

Perturbation $\omega_i \sim \mathcal{N}(0, \sigma^2)$

Theorem (to appear at AISTATS)

For any ϵ -low rank MDP w.r.t. features ϕ_h , Mod-RLSVI with $\alpha = 1/(\sigma\sqrt{d})$ and $\sigma = O(\sqrt{Hd} + \epsilon H\sqrt{dk})$, with high probability, suffers a regret

$$R(K) = \widetilde{\mathcal{O}}\left(H^2 d^2 \sqrt{T} + H^5 d^4 + \epsilon dHT(1 + \epsilon dH^2)\right)$$

- Order optimal \sqrt{T}
- Long "warm-up" phase
- Factor \sqrt{Hd} worse than OptLSVI [Jin et al., 2019]
- \blacksquare Linear regret depending on ϵ

Computationally Inefficient

Complexity of Opt-LSVI and Opt-RLSVI

- Space $\mathcal{O}(d^2H + dAHK)$
- $\blacksquare \text{ Time } \mathcal{O}(d^2AHK^2)$

Move to *incremental* model-free \Rightarrow recursive least-squares

Issues:

- Tracking a moving non-linear target
- 2 How to handle randomization

Pros and Cons

complexity

— ...

Open Questions in Low-Rank MDPs

facebook Artificial Intelligence Research

LQR

Continuous state-action space

A Assumption: $\mathcal{S} imes \mathcal{A} \subseteq \mathbb{R}^d$, linear dynamics and quadratic reward

$$s_{h+1} = A_h s_h + B_h a_h + \epsilon_h$$
$$r_h(s, a) = s^{\mathsf{T}} Q_h s + a^{\mathsf{T}} R_h a$$

 \Rightarrow *Efficient* computation of π^{\star}

Model-based

- Optimism: $\widetilde{O}(\sqrt{T})$ [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh et al., 2018]
- **•** Randomization: $\widetilde{\mathcal{O}}(\sqrt{T})$ [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

Model-free ?

*Bayesian regret or 1-dimensional guarantees

LQR

Continuous state-action space 🖒

A Assumption: $S \times A \subseteq \mathbb{R}^d$, linear dynamics and quadratic reward

$$s_{h+1} = A_h s_h + B_h a_h + \epsilon_h$$
$$r_h(s, a) = s^{\mathsf{T}} Q_h s + a^{\mathsf{T}} R_h a$$

 \Rightarrow *Efficient* computation of π^* \bigcirc

Model-based

- Optimism: $\widetilde{\mathcal{O}}(\sqrt{T})$ [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh et al., 2018]
- **•** Randomization: $\widetilde{\mathcal{O}}(\sqrt{T})$ [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

Model-free ?

*Bayesian regret or 1-dimensional guarantees

LQR

Continuous state-action space 🖒

A Assumption: $S \times A \subseteq \mathbb{R}^d$, linear dynamics and quadratic reward

$$s_{h+1} = A_h s_h + B_h a_h + \epsilon_h$$
$$r_h(s, a) = s^{\mathsf{T}} Q_h s + a^{\mathsf{T}} R_h a$$

 \Rightarrow *Efficient* computation of π^* 🖒

Model-based

- Optimism: $\widetilde{O}(\sqrt{T})$ [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh et al., 2018]
- **•** Randomization: $\widetilde{\mathcal{O}}(\sqrt{T})$ [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

Model-free ?

 $\mathbf{\nabla}$ exact, model-based, and strong assumption

*Bayesian regret or 1-dimensional guarantees

Questions?

Website

https://rlgammazero.github.io

- Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear quadratic systems. In *COLT*, volume 19 of *JMLR Proceedings*, pages 1–26. JMLR.org, 2011.
- Yasin Abbasi-Yadkori, Nevena Lazic, and Csaba Szepesvári. Regret bounds for model-free linear quadratic control. *CoRR*, abs/1804.06021, 2018.
- Marc Abeille and Alessandro Lazaric. Thompson sampling for linear-quadratic control problems. In AISTATS, volume 54 of Proceedings of Machine Learning Research, pages 1246–1254. PMLR, 2017.
- Marc Abeille and Alessandro Lazaric. Improved regret bounds for thompson sampling in linear quadratic control problems. In *ICML*, volume 80 of *Proceedings of Machine Learning Research*, pages 1–9. PMLR, 2018.
- Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pages 263–272. PMLR, 2017.
- Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In *Machine Learning* Proceedings 1995, pages 30 – 37. Morgan Kaufmann, San Francisco (CA), 1995. ISBN 978-1-55860-377-6.
- Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. *Journal of Machine Learning Research*, 12(May):1655–1695, 2011.
- Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. CoRR, abs/1912.05830, 2019.
- Alon Cohen, Avinatan Hassidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal Talwar. Online linear quadratic control. In *ICML*, volume 80 of *JMLR Workshop and Conference Proceedings*, pages 1028–1037. JMLR.org, 2018.
- Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic regulators efficiently with only √t regret. In *ICML*, volume 97 of *Proceedings of Machine Learning Research*, pages 1300–1309. PMLR, 2019.
- Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for robust adaptive control of the linear quadratic regulator. In *NeurIPS*, pages 4192–4201, 2018.

- Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation sufficient for sample efficient reinforcement learning? *CoRR*, abs/1910.03016, 2019.
- Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Input perturbations for adaptive regulation and learning. *CoRR*, abs/1811.04258, 2018.
- Maryam Fazel, Rong Ge, Sham M. Kakade, and Mehran Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In *ICML*, volume 80 of *Proceedings of Machine Learning Research*, pages 1466–1475. PMLR, 2018.
- Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. *International statistical review*, 70(3):419–435, 2002.
- Morteza Ibrahimi, Adel Javanmard, and Benjamin Van Roy. Efficient reinforcement learning for high dimensional linear quadratic systems. In *NIPS*, pages 2645–2653, 2012.
- Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably efficient? In *NeurIPS*, pages 4868–4878, 2018.
- Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement learning with linear function approximation. *CoRR*, abs/1907.05388, 2019.
- K. Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret bounds for undiscounted continuous reinforcement learning. In *ICML*, volume 37 of *JMLR Workshop and Conference Proceedings*, pages 524–532. JMLR.org, 2015.
- Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Pre-publication version, 2018. URL http://downloads.tor-lattimore.com/banditbook/book.pdf.
- Tor Lattimore and Csaba Szepesvári. Learning with good feature representations in bandits and in RL with a generative model. *CoRR*, abs/1911.07676, 2019.

Rémi Munos. Introduction to reinforcement learning and multi-armed bandits. NETADIS Summer School, 2013.

- Chengzhuo Ni, Lin F. Yang, and Mengdi Wang. Learning to control in metric space with optimal regret. In *Allerton*, pages 726–733. IEEE, 2019.
- Jungseul Ok, Alexandre Proutière, and Damianos Tranos. Exploration in structured reinforcement learning. In *NeurIPS*, pages 8888–8896, 2018.
- Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted continuous reinforcement learning. In NIPS, pages 1772–1780, 2012.
- Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pages 2377–2386. JMLR.org, 2016.
- Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value functions. Journal of Machine Learning Research, 20(124):1-62, 2019. URL http://jmlr.org/papers/v20/18-339.html.
- Yi Ouyang, Mukul Gagrani, and Rahul Jain. Control of unknown linear systems with thompson sampling. In *Allerton*, pages 1198–1205. IEEE, 2017.
- Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Exploration bonus for regret minimization in discrete and continuous average reward mdps. In *NeurIPS*, pages 4891–4900, 2019.
- Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In *NeurIPS*, pages 14410–14420, 2019.
- Sean R. Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization for episodic reinforcement learning in metric spaces. Proc. ACM Meas. Anal. Comput. Syst., 3(3), December 2019. doi: 10.1145/3366703. URL https://doi.org/10.1145/3366703.
- Aleksandrs Slivkins. Contextual bandits with similarity information. J. Mach. Learn. Res., 15(1):2533-2568, 2014.
- Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric spaces. *CoRR*, abs/1905.00475, 2019.
- Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features. In *ICML*, volume 97 of *Proceedings of Machine Learning Research*, pages 6995–7004. PMLR, 2019a.
- Lin F. Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and regret bound. *CoRR*, abs/1905.10389, 2019b.
- Andrea Zanette, David Brandfonbrener, Matteo Pirotta, and Alessandro Lazaric. Frequentist regret bounds for randomized least-squares value iteration. *CoRR*, abs/1911.00567, 2019.