Exploration-Exploitation
 in Reinforcement Learning

Part 4 - Regret Minimization in Continuous MDPs

Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta

Outline

1 Smooth MDPs

- Adaptive Q-Learning

2 Linear Structure
■ Low-Rank MDPs

- LQR

Website
https://rlgammazero.github.io

History: Regret Minimization in Smooth MDPs

Smooth Problems

$\mathcal{S} \times \mathcal{A}$ is a compact metric space

$$
d\left[(s, a),\left(s^{\prime}, a^{\prime}\right)\right] \text { is a metric on } \mathcal{S} \times \mathcal{A}
$$

Q^{\star} is a smooth function: $\forall\left(s, a, s^{\prime}, a^{\prime}\right)$ and $\forall h \in[H]$

$$
\left|Q_{h}^{\star}(s, a)-Q_{h}^{\star}\left(s^{\prime}, a^{\prime}\right)\right| \leq L_{q, h} d\left[(s, a),\left(s^{\prime}, a^{\prime}\right)\right]
$$

Examples

- Discrete and continuous state-action spaces
- Deterministic systems with metric structure
- Stochastic systems with regularity assumptions on the transitions

Smooth MDPs

A smooth continuous MDP has
■ \mathcal{S}, \mathcal{A} measurable spaces

- Transitions and rewards are "smooth": $\forall\left(s, a, s^{\prime}, a^{\prime}\right)$ and $\forall h \in[H]$

$$
\longrightarrow d_{M}\left[p_{h}(\cdot \mid s, a), p_{h}\left(\cdot \mid s^{\prime}, a^{\prime}\right)\right] \leq \lambda_{p} d\left[(s, a),\left(s^{\prime}, a^{\prime}\right)\right]
$$

e.g., Total Variation

$$
\left|r_{h}(s, a)-r_{h}\left(s^{\prime}, a^{\prime}\right)\right| \leq \lambda_{r} d\left[(s, a),\left(s^{\prime}, a^{\prime}\right)\right]
$$

(TV) or Wasserstein
\leftrightarrow Smooth transitions and rewards \Longrightarrow smooth Q-function (\nLeftarrow)

$$
\text { Total Variation } \mapsto L_{q, h}=2 \lambda_{p}(H-h)+\lambda_{r}, \quad \text { Wasserstein } \mapsto L_{q, h}=\sum_{h^{\prime}=h}^{H} \lambda_{r} \lambda_{p}^{H-h^{\prime}}
$$

\leadsto Total Variation Liptschitz \Longrightarrow Wasserstein Lipschitz [Gibbs and Su, 2002]

Lower-Bound in Metric Space

Theorem (Sinclair et al. [2019])

Consider a metric space $\mathcal{S} \times \mathcal{A}$ such that $\operatorname{diam}(\mathcal{S} \times \mathcal{A}) \leq d_{\max }$. Let d_{c} be the covering dimension with parameter c of the space $\mathcal{S} \times \mathcal{A}$

$$
d_{c}=\inf \left\{d \geq 0 \mid N_{r} \leq c r^{-d}, \forall r \in\left(0, d_{\max }\right]\right\}
$$

where N_{r} is the packing number.
Then there exists a distribution over problem instances such that for any algorithm, the regret is at least

$$
\Omega\left(H^{3 / 2} K^{\left(d_{c}+1\right) /\left(d_{c}+2\right)} c^{1 /\left(d_{c}+2\right)}\right)
$$

E Adapted from RL [Jin et al., 2018] and the contextual bandit case [Slivkins, 2014]

Online Learning in Smooth Problems

Model-based

- Estimate both p and r
+ Counterfactual reasoning - Computational complexity
■ Optimism: [Ortner and Ryabko, 2012, Lakshmanan et al., 2015, Qian et al., 2019]*
■ Randomization: ?

Model-free algorithms

- Eschew learning transitions and only focus on learning good state-action mappings + No need of planning - Estimate only Q^{\star}
- Optimism: Q-learning $\widetilde{\mathcal{O}}\left(H^{5 / 2} K^{(d+1) /(d+2)}\right)$ [Song and Sun, 2019, Sinclair et al., 2019]
- Randomization: ?

[^0]
Solution Methods

- Uniform discretization (e.g., ϵ-net)
[Ortner and Ryabko, 2012, Lakshmanan et al., 2015, Qian et al., 2019, Song and Sun, 2019]
- Adaptive discretization (e.g., zooming) adapt the discretization over space and time in a data-driven manner

[^1]
Adaptive Partitioning in Bandits

Find online the maximum of a function f.
Assume f is Lipschitz: $|f(x)-f(y)| \leq d(x, y)$.

- At each time step t, select x_{t}
- Observe $f\left(x_{t}\right)$
- Goal: maximize sum of $f\left(x_{t}\right)$

Adaptive Partitioning in Bandits

Evaluating f at a point x provides an upper-bound (f is Lipschitz)

* example from [Munos, 2013]

Adaptive Partitioning in Bandits

Refine upper-bound
What point to select? Optimism

* example from [Munos, 2013]

Adaptive Partitioning in Bandits

We have noisy observations. How to define high-probability upper-bound?

* example from [Munos, 2013]

Adaptive Partitioning in Bandits

Fix a ball B_{i} (interval in 1D) containing n_{i} points $\left\{x_{t}\right\}$. Then, $\forall y \in B_{i}$

$$
\frac{1}{n_{i}} \sum_{t=1}^{n_{i}} r_{t}+\sqrt{\frac{\log 1 / \delta}{2 n_{i}}} \geq \frac{1}{n_{i}} \sum_{t=1}^{n_{i}} f\left(x_{t}\right) \geq f(y)-\operatorname{diam}\left(B_{i}\right)
$$

since f is Lipschitz

[^2]
Adaptive Partitioning in Bandits

How to increase accuracy? Increase granularity over time (tree structure) Split is a trade-off between confidence interval and ball radius
bias-variance trade-off

Adaptive Partitioning: Example

$f(x)=\frac{1}{2}(\sin (13 x) \sin (27 x)+1)$ satisfies the local smoothness assumption $f(x) \geq f\left(x^{\star}\right)-l\left(x, x^{\star}\right)$ with

■ $l_{1}(x, y)=14|x-y|$ (i.e., f is globally Lipschitz)
$-l_{2}(x, y)=222|x-y|^{2}$ (i.e., f is locally quadratic)

Adaptive Partitioning: Example

* example from [Munos, 2013]

Adaptive Partitioning: Example

Adaptive Optimistic Q-Learning (AdOpt-QL)

[Sinclair et al., 2019]

- Uses hierachical covering of state-action space
- Starts from a single partition covering all the space
- Adapts the granularity of the partition based on rewards and visits

$$
\mathcal{P}_{h k}=\left\{B_{i}\right\}: \mathcal{S} \times \mathcal{A} \subseteq \bigcup_{i} B_{i}
$$

- For each ball B we store
- An optimistic estimate $Q_{h}(B)$ of Q^{\star}
- A visit counter $N_{h}(B)$

AdOpt-QL

```
Input: S, A, vh,ph, L Lh
Initialize Qh(B)=H and N}\mp@subsup{N}{h}{}(B)=0\mathrm{ for all }h=[H]\mathrm{ , with }B=\mathcal{S}\times\mathcal{A
for k=1,\ldots,K do // episodes
    Observe initial state s1 (arbitrary)
    for }h=1,\ldots,H\mathrm{ do
        Select region containing sh:B=}\operatorname{arg}\operatorname{max}\mp@subsup{Q}{h}{}(\overline{B}
                \overline{B}\in\mp@subsup{\textrm{rel}}{h}{}(\mp@subsup{s}{h}{})
                                    As in Opt-QL
    Execute any action a such that (sh,a) \indom
    Observe }\mp@subsup{r}{h}{}\mathrm{ and }\mp@subsup{s}{h+1}{
    Set }\mp@subsup{N}{h}{}(B)=\mp@subsup{N}{h}{}(B)+
    Update
                                    \mp@subsup{\widehat{Q}}{h}{}(B)=(1-\mp@subsup{\alpha}{t}{})\mp@subsup{\widehat{Q}}{h}{}(B)+\mp@subsup{\alpha}{t}{}(\mp@subsup{r}{h}{}+\mp@subsup{\widehat{V}}{h+1}{}(\mp@subsup{s}{h+1}{})+\mp@subsup{b}{t}{})
    Set }\mp@subsup{\widehat{V}}{h}{}(s)=\operatorname{min}{H,\mp@subsup{\operatorname{max}}{\mp@subsup{B}{}{\prime}\in\mp@subsup{\operatorname{rel}}{h}{}(s)}{}\mp@subsup{\widehat{Q}}{h}{}(\mp@subsup{B}{}{\prime})
    If }\mp@subsup{N}{h}{}(B)\geqg(B)\mathrm{ then SplitBall( }B,h,k
    end
end

\section*{AdOpt-QL: Action Selection}
- Traverse the hierachical structure based on \(Q\) and \(s_{h k}\)
- Optimistic selection of the ball
\[
B=\underset{\bar{B}}{\arg \max } Q_{h}(\bar{B})
\]
such that \(s_{h k} \in B\)
- Play random action in \(B\)

\footnotetext{
* figure from [Bubeck et al., 2011]
}


\section*{AdOpt-QL: Uncertainty}

! \(t=N_{h k}(B)+1\) i.e., number of visits
! \(\operatorname{diam}(\mathcal{S} \times \mathcal{A}) \leq d_{\max }\)

\section*{AdOpt-QL: Refining the Partition}

If \(N_{h}^{k+1}(B) \geq\left(\frac{d_{\max }}{\operatorname{radi}(B)}\right)^{2}\) then
- Split ball
- Cover \(\operatorname{dom}(B)\) using a \(\frac{1}{2} \operatorname{radi}(B)\)-net
\(\leftrightarrow\) when the number of samples is large, variance dominates the bias \(\Longrightarrow\) better to split
\(\leftrightarrow\) new balls inherit properties of the parent ball

\section*{AdOpt-QL: Regret}

\section*{Theorem (Thm. 4.1 by Sinclair et al. [2019])}

For any smooth MDP with \(L_{q h}\)-Lipschitz Q-function and non-stationary transitions, AdOpt-QL, with high probability, suffers a regret
\[
R\left(K, M^{\star}, \text { AdOpt-QL }\right)=\widetilde{\mathcal{O}}\left(c^{1 /\left(d_{c}+2\right)} H^{5 / 2} K^{\left(d_{c}+1\right) /\left(d_{c}+2\right)}\right)
\]
- Order optimal in \(c\) and \(K\)
- Factor \(H\) worse than the lower-bound

3 same bound for [Song and Sun, 2019] with uniform discretization

\section*{1 Smooth MDPs}

\section*{2 Linear Structure}

\section*{History: Regret Minimization}

\section*{Linear Structure}


\section*{Linear Function Approximation}

Action-value functions
- Feature \(\operatorname{map} \phi_{h}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{d}\)
- Function approximation \(Q_{h}(s, a)=\phi_{h}(s, a)^{\mathrm{T}} \theta_{h}\)

\section*{Least-Squares Value Iteration (LSVI)}
```

Input: Dataset $\mathcal{D}_{k}=\left(s_{h i}, a_{h i}, r_{h i}\right)_{h=1, i=1}^{H, k}$
Set $\theta_{H+1}=0$ and $\widehat{Q}_{H+1}(s, a)=\phi_{H+1}(s, a)^{\top} \theta_{H+1}$
for $h=H, \ldots, 1$ do // backward induction
Compute

$$
y_{h i}=r_{h i}+\max _{a \in \mathcal{A}} \widehat{Q}_{h+1, k}\left(s_{h+1, i}, a\right)=r_{h i}+\widehat{V}_{h+1, k}\left(s_{h+1, i}\right), i=1, \ldots, k
$$

Build regression dataset $\mathcal{D}_{h}^{\text {reg }}=\left\{\phi_{h}\left(s_{h i}, a_{h i}\right), y_{h i}\right\}_{i}$
Compute

$$
\begin{gathered}
\Sigma_{h k}=\sum_{i=1}^{k} \phi_{h}\left(s_{h i}, a_{h i}\right) \phi_{h}\left(s_{h i}, a_{h i}\right)^{\top}+\lambda I, \quad \Omega_{h k}=\sum_{i=1}^{k} \phi_{h}\left(s_{h i}, a_{h i}\right) y_{h i} \\
\widehat{\theta}_{h k}=\arg \min _{\theta} \frac{1}{k} \sum_{i=1}^{k}\left(y_{h i}-\phi_{h}\left(s_{h i}, a_{h i}\right)^{\top} \theta\right)^{2}+\lambda\|\theta\|_{2}^{2} \\
=\Sigma_{h k}^{-1} \Omega_{h k}
\end{gathered}
$$

end
return $\left\{\widehat{\theta}_{h k}\right\}_{h=1}^{H}$

```

\section*{Least-Squares Value Iteration (LSVI)}


\section*{Theorem ([Du et al., 2019])}

Let assume that \(\phi_{h}\) approximates well the action-value function of any policy \(\pi\)
\[
\min _{\theta}\left\|Q_{h}^{\pi}(\cdot)-\phi_{h}(\cdot)^{\top} \theta\right\|_{\infty} \leq \epsilon
\]

There exists an MDP such that any algorithm that returns a \(1 / 2\)-optimal policy with 0.9 probability requires
\[
T \geq \Omega\left(\min \left\{|\mathcal{S}|, 2^{H}, \exp \left(d \epsilon^{2} / 16\right)\right\}\right)
\]
[Baird, 1995] counter-examples for LSVI-like algorithms

\section*{Not So Bad News}

Theorem ([Lattimore and Szepesvári, 2019])
Let assume that \(\phi_{h}\) approximates well the action-value function of any policy \(\pi\)
\[
\min _{\theta}\left\|Q_{h}^{\pi}(\cdot)-\phi_{h}(\cdot)^{\top} \theta\right\|_{\infty} \leq \epsilon
\]

Approximate policy iteration using a generative model returns a \(O(\epsilon \sqrt{d})\)-optimal policy with
\[
T \leq \widetilde{O}\left(\frac{d}{\epsilon^{2}}\right)
\]

\section*{Not So Bad News}

Theorem ([Lattimore and Szepesvári, 2019])
Let assume that \(\phi_{h}\) approximates well the action-value function of any policy \(\pi\)
\[
\min _{\theta}\left\|Q_{h}^{\pi}(\cdot)-\phi_{h}(\cdot)^{\top} \theta\right\|_{\infty} \leq \epsilon
\]

Approximate policy iteration using a generative model returns a \(O(\epsilon \sqrt{d})\)-optimal policy with
\[
T \leq \widetilde{O}\left(\frac{d}{\epsilon^{2}}\right)
\]
\& API vs LSVI, generative model vs RL

\section*{Some Good News}

Low-Rank MDPs [Yang and Wang, 2019a]

A low-rank (linear) MDP \(M=\left\langle\mathcal{S}, \mathcal{A}, \phi_{h}, r_{h}, p_{h}, H\right\rangle\)
- \(\mathcal{S} \times \mathcal{A}\) is a measurable space
- Dynamics is low rank, \(\psi_{h}: \mathcal{S} \rightarrow \mathbb{R}^{d}\)
\[
p_{h}\left(s^{\prime} \mid s, a\right)=\phi_{h}(s, a)^{\top} \psi_{h}\left(s^{\prime}\right)
\]
- Reward has linear structure, \(\theta_{h}^{r} \in \mathbb{R}^{d}\)
\[
r_{h}(s, a)=\phi_{h}(s, a)^{\top} \theta_{h}^{r}
\]
\(\mathcal{B}\) examples are tabular MDPs, simplex feature space (e.g., mixture models)
E This is a generalization of Linear Contextual Bandits [Lattimore and Szepesvári, 2018]

\section*{Some Good News}

Low-Rank MDPs

For every policy \(\pi=\left(\pi_{1}, \ldots, \pi_{H}\right)\) and \(h \in[H], Q_{h}^{\pi}\) is linear in \(\phi_{h}\)
\[
\begin{aligned}
Q_{h}^{\pi}(s, a) & =r_{h}(s, a)+\mathbb{E}_{s^{\prime} \mid s, a}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right] \\
& =\phi_{h}(s, a)^{\top} \theta_{h}^{r}+\int_{s^{\prime}} \phi_{h}(s, a)^{\top} \psi_{h}\left(s^{\prime}\right) V_{h+1}^{\pi}\left(s^{\prime}\right) \mathrm{d} s^{\prime} \\
& =\phi_{h}(s, a)^{\top} \underbrace{\left(\theta_{h}^{r}+\int_{s^{\prime}} \psi_{h}\left(s^{\prime}\right) V_{h+1}^{\pi}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right)}_{\text {independent from }(s, a)} \\
& =\phi_{h}(s, a)^{\top} \theta_{h}^{\pi}
\end{aligned}
\]

A very strong structure!
any function \(V_{h+1}^{\pi}\) is transformed into a linear function by the Bellman operator

\section*{Some Good News}

A Assumption: MDP is approximately low-rank w.r.t. features \(\phi_{h}\)

\section*{Model-based}
- Optimism: \(\widetilde{\mathcal{O}}\left(H^{2} d^{3 / 2} \sqrt{T}\right)\) [Yang and Wang, 2019b]*
- Randomization: ?

Model-free
- Optimism: Opt-LSVI \(\widetilde{\mathcal{O}}\left(H^{3 / 2} d^{3 / 2} \sqrt{T}\right)\) [Jin et al., 2019]**
- Randomization: Opt-RLSVI \(\widetilde{\mathcal{O}}\left(H^{2} d^{2} \sqrt{T}\right)\) [Zanette et al., 2019]***
*Depending on further (light) assumptions can be improved from \(d^{3 / 2}\) to \(d\)
**If the MDP is \(\epsilon\)-low-rank, additional term \(\widetilde{\mathcal{O}}(\epsilon d H T)\)
\({ }^{* * *}\) If the MDP is \(\epsilon\)-low-rank, additional term \(\widetilde{\mathcal{O}}\left(\epsilon d H T\left(1+\epsilon d H^{2}\right)\right.\)

\section*{Some Good News}

A Assumption: MDP is approximately low-rank w.r.t. features \(\phi_{h}\)

\section*{Model-based}
- Optimism: \(\widetilde{\mathcal{O}}\left(H^{2} d^{3 / 2} \sqrt{T}\right)\) [Yang and Wang, 2019b]*
- Randomization: ?

Model-free
- Optimism: Opt-LSVI \(\widetilde{\mathcal{O}}\left(H^{3 / 2} d^{3 / 2} \sqrt{T}\right)\) [Jin et al., 2019]**
- Randomization: Opt-RLSVI \(\widetilde{\mathcal{O}}\left(H^{2} d^{2} \sqrt{T}\right)\) [Zanette et al., 2019]***

B continuous MDPs, approximate low-rank, model-free
*Depending on further (light) assumptions can be improved from \(d^{3 / 2}\) to \(d\)
**If the MDP is \(\epsilon\)-low-rank, additional term \(\widetilde{\mathcal{O}}(\epsilon d H T)\)
\({ }^{* * *}\) If the MDP is \(\epsilon\)-low-rank, additional term \(\widetilde{\mathcal{O}}\left(\epsilon d H T\left(1+\epsilon d H^{2}\right)\right.\)

\section*{Some Good News}

A Assumption: MDP is approximately low-rank w.r.t. features \(\phi_{h}\)
Model-based
- Optimism: \(\widetilde{\mathcal{O}}\left(H^{2} d^{3 / 2} \sqrt{T}\right)\) [Yang and Wang, 2019b]*
- Randomization: ?

Model-free
- Optimism: Opt-LSVI \(\widetilde{\mathcal{O}}\left(H^{3 / 2} d^{3 / 2} \sqrt{T}\right)\) [Jin et al., 2019]**
- Randomization: Opt-RLSVI \(\widetilde{\mathcal{O}}\left(H^{2} d^{2} \sqrt{T}\right)\) [Zanette et al., 2019]***

B continuous MDPs, approximate low-rank, model-free
R not "that" scalable, strong assumption (see later)
*Depending on further (light) assumptions can be improved from \(d^{3 / 2}\) to \(d\)
**If the MDP is \(\epsilon\)-low-rank, additional term \(\widetilde{\mathcal{O}}(\epsilon d H T)\)
\({ }^{* * *}\) If the MDP is \(\epsilon\)-low-rank, additional term \(\widetilde{\mathcal{O}}\left(\epsilon d H T\left(1+\epsilon d H^{2}\right)\right.\)

\section*{Lower-Bound for Low Rank MDPs}

\section*{Theorem (JJin et al., 2019])}

For any low-rank MDP \(M^{\star}\), any algorithm \(\mathfrak{A}\) suffers at least a regret
\[
R\left(K, M^{\star}, \mathfrak{A}\right)=\Omega\left(d^{1 / 2} H \sqrt{T}\right)
\]
[Jin et al., 2019]
```

Input: }\mp@subsup{\phi}{h}{
Initialize }\mp@subsup{Q}{h1}{}(s,a)=0\mathrm{ for all (s,a) {S S }\times\mathcal{A}\mathrm{ and }h=1,···,H,\mp@subsup{\mathcal{D}}{1}{}=
for k=1,···,K do // episodes
Observe initial state s slk (arbitrary)
Run LSVI with UCB on }\mp@subsup{\mathcal{D}}{k}{
for }h=1,···,H\mathrm{ do
Execute }\mp@subsup{a}{hk}{}=\mp@subsup{\pi}{hk}{}(\mp@subsup{s}{hk}{})=\operatorname{arg}\mp@subsup{\operatorname{max}}{a}{}\mp@subsup{\widehat{Q}}{hk}{}(\mp@subsup{s}{hk}{},a
Observe r rhk and s}\mp@subsup{s}{h+1,k}{
end
Add trajectory (}\mp@subsup{s}{hk}{},\mp@subsup{a}{hk}{},\mp@subsup{r}{hk}{}\mp@subsup{)}{h=1}{H}\mathrm{ to }\mp@subsup{\mathcal{D}}{k+1}{
end

```

\section*{LSVI with Upper-Confidence Bounds}
```

Input: Dataset $\mathcal{D}_{k}=\left(s_{h i}, a_{h i}, r_{h i}\right)_{h=1, i=1}^{H, k}$
Set $\theta_{H+1}=0$ and $\widehat{Q}_{H+1}(s, a)=\phi_{H+1}(s, a)^{\top} \theta_{H+1}$
for $h=H, \ldots, 1$ do // backward induction

```

\section*{Compute}
```

$$
y_{h i}=r_{h i}+\widehat{V}_{h+1, k}\left(s_{h+1, i}\right), \quad i=1, \ldots, k
$$

Build regression dataset $\mathcal{D}_{h}^{\text {reg }}=\left\{\phi_{h}\left(s_{h i}, a_{h i}\right), y_{h i}\right\}_{i}$
Compute

$$
\begin{gathered}
\Sigma_{h k}=\sum_{i=1}^{k} \phi_{h}\left(s_{h i}, a_{h i}\right) \phi_{h}\left(s_{h i}, a_{h i}\right)^{\top}+\lambda I, \quad \Omega_{h k}=\sum_{i=1}^{k} \phi_{h}\left(s_{h i}, a_{h i}\right) y_{h i} \\
\widehat{\theta}_{h k}=\Sigma_{h k}^{-1} \Omega_{h k}
\end{gathered}
$$

Add uncertainty

$$
\widehat{Q}_{h k}(s, a)=\phi_{h}(s, a)^{\top} \widehat{\theta}_{h k}+b_{h k}(s, a)
$$

Set $\widehat{V}_{h k}(s)=\min \left\{H, \max _{a \in \mathcal{A}} \widehat{Q}_{h k}(s, a)\right\}$
end
return $\left\{\widehat{\theta}_{h k}\right\}_{h=1}^{H}$

```

\section*{Measuring Uncertainties}

\section*{Theorem (Lem. B.4-B. 5 of [Jin et al., 2019])}

Consider the filtration composed by the history generated by the algorithm at any point during its runtime. If \(\left\|\phi_{h}(s, a)\right\|_{2} \leq L_{\phi},\left\|\theta_{h}^{r}\right\|_{2} \leq L_{r}\) and \(\int_{s}\left\|\psi_{h}(s)\right\|_{2} \leq L_{\psi}\), then with probability at least \(1-\delta\), for all \((s, a, h, k)\), we have
\[
\left|\phi_{h}(s, a)^{\top} \widehat{\theta}_{h}^{k}-Q_{h}^{\star}(s, a)\right| \leq \alpha_{k} \sqrt{\phi_{h}(s, a)^{\top} \Sigma_{h k}^{-1} \phi_{h}(s, a)}:=b_{h k}(s, a)
\]
where
\[
\alpha_{k} \propto d H \sqrt{\log \left(\frac{d H k L_{\phi} L_{\psi} L_{r} \lambda}{\delta}\right)}+\sqrt{\lambda} L_{\phi} L_{\theta}
\]
< \(\left\|\phi_{h}(s, a)\right\|_{\Sigma_{h k}^{-1}}\) measures the correlation between \(\phi_{h}(s, a)\) and the features observed so far

\section*{Theorem}

Let \(\lambda=1, L_{\psi}=L_{r}=\sqrt{d}\) and \(L_{\phi}=1\). For any \(\epsilon\) low rank MDP \(M\) w.r.t. features \(\phi_{h}\), OptLSVI with \(\alpha_{k}=\mathcal{O}(d H+\epsilon H \sqrt{d k})\), with high probability, suffers a regret
\[
R\left(K, M^{\star}, O p t L S V I\right)=\mathcal{O}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}+\epsilon d H T\right)
\]
- Order optimal \(\sqrt{T}\)
- Factor \(d \sqrt{H}\) worse than the lower-bound
- Linear dependence in \(\epsilon\)
\& \(\sqrt{H}\) might be saved by moving from Hoeffding to Bernstein bound see tabular RL [e.g., Azar et al., 2017]
\% we don't know a Bernstein bound for the Least-Square estimator

\section*{Randomized Least-Squares Value Iteration (RLSVI)}
```

Input: }\mp@subsup{\phi}{h}{
Initialize Qhil}(s,a)=0\mathrm{ for all (s,a) \& S }\times\mathcal{A}\mathrm{ and }h=1,···,H,\mp@subsup{\mathcal{D}}{1}{}=
for }k=1,···,K\mathrm{ do // episodes
Observe initial state s slk (arbitrary)
Run RLSVI on D }\mp@subsup{\mathcal{N}}{k}{
for }h=1,···,H\mathrm{ do
Execute }\mp@subsup{a}{hk}{}=\mp@subsup{\pi}{hk}{}(\mp@subsup{s}{hk}{})=\operatorname{arg}\mp@subsup{\operatorname{max}}{a}{}\mp@subsup{\widehat{Q}}{hk}{}(\mp@subsup{s}{hk}{},a
Observe r}\mp@subsup{r}{hk}{}\mathrm{ and }\mp@subsup{s}{h+1,k}{
end
Add trajectory (}\mp@subsup{s}{hk}{},\mp@subsup{a}{hk}{},\mp@subsup{r}{hk}{}\mp@subsup{)}{h=1}{H}\mathrm{ to }\mp@subsup{\mathcal{D}}{k+1}{
end

```


\section*{Randomized LSVI}


\section*{Randomized LSVI}


\section*{Randomized Least-Squares Value Iteration (RLSVI)}

Input: Dataset \(\mathcal{D}_{k}=\left(s_{h i}, a_{h i}, r_{h i}\right)_{h=1, i=1}^{H, k}\)
Set \(\theta_{H+1}=0\) and \(\bar{Q}_{H+1}(s, a)=\phi_{H+1}(s, a)^{\top} \theta_{H+1}\)
for \(h=H, \ldots, 1\) do // backward induction

Bootstrapping randomized estimates

Compute
\[
\bar{y}_{h i}=r_{h i}+\max _{a \in \mathcal{A}} \bar{Q}_{h+1, k}\left(s_{h+1, i}, a\right)=r_{h i}+\bar{V}_{h+1, k}\left(s_{h+1, i}\right), i=1, \ldots, k
\]

Build regression dataset \(\mathcal{D}_{h}^{\text {reg }}=\left\{\phi_{h}\left(s_{h i}, a_{h i}\right), \bar{y}_{h i}\right\}_{i}\)
Compute
\[
\widehat{\theta}_{h k}=\Sigma_{h k}^{-1} \bar{\Omega}_{h k} ; \quad \bar{\Omega}_{h k}=\sum_{i=1}^{k} \phi_{h}\left(s_{h i}, a_{h i}\right) \bar{y}_{h i}
\]

Sample \(\xi_{h k} \sim \mathcal{N}\left(0, \sigma^{2} \Sigma_{h k}^{-1}\right)\)
Set \(\bar{\theta}_{h k}=\widehat{\theta}_{h k}+\xi_{h k}\)
end
return \(\left\{\bar{\theta}_{h k}\right\}_{h=1}^{H}\)

\section*{RLSVI as Regression on Perturbed Data}
[Osband et al., 2019, Russo, 2019]

\section*{Bayesian Update}
- True parameter is \(\theta^{\star} \in \mathbb{R}^{d} \Rightarrow\) we want to estimate it
- Assume Gaussian prior \(\mathcal{N}(\bar{\theta}, \lambda I)\)
- Dataset \(\mathcal{D}=\left(x_{i}, y_{i}\right)_{i=1}^{N}\), where
\[
y_{i}=x_{i}^{\top} \theta+\epsilon_{i} \quad, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
\]
- Conditional posterior
\[
\theta^{\star} \left\lvert\, \mathcal{D} \sim \underbrace{\mathcal{N}\left(\Sigma^{-1}\left(\frac{1}{\sigma^{2}} X^{\top} y+\frac{1}{\lambda} \bar{\theta}\right), \Sigma^{-1}\right)}_{:=\mu_{p}}\right.
\]

\section*{RLSVI as Regression on Perturbed Data}
- We can sample \(\mu_{p}\) by fitting a least-squares estimate

\section*{Perturbation \(\omega_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)\)}
\[
\widehat{\theta}=\underset{\theta}{\arg \min } \frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(y_{i}+\omega_{i}-x_{i}^{\top} \theta\right)+\frac{1}{\lambda}\|\tilde{\theta}-\theta\|_{2}^{2}
\]
\[
\Rightarrow \widehat{\theta} \sim \mu_{p}
\]

\section*{RLSVI as Regression on Perturbed Data}

\section*{Perturbation \(\omega_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)\)}
- We can sample \(\mu_{p}\) by fitting a least-squares estimate
\[
\widehat{\theta}=\underset{\theta}{\arg \min } \frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(y_{i}+\omega_{i}-x_{i}^{\top} \theta\right)+\frac{1}{\lambda}\|\tilde{\theta}-\theta\|_{2}^{2}
\]
\[
\Rightarrow \widehat{\theta} \sim \mu_{p}
\]

For linear models,
```

poster sampling = regularized least-squares on perturbed data

```

For tabular MDPs, \(x_{i}=e_{s, a}\) and \(\theta=Q\)
backward induction on randomized rewards \(=\) RLSVI

\section*{Opt-RLSVI: Regret}

\section*{Theorem (to appear at AISTATS)}

For any \(\epsilon\)-low rank MDP w.r.t. features \(\phi_{h}\), Mod-RLSVI with \(\alpha=1 /(\sigma \sqrt{d})\) and \(\sigma=O(\sqrt{H d}+\epsilon H \sqrt{d k})\), with high probability, suffers a regret
\[
R(K)=\widetilde{\mathcal{O}}\left(H^{2} d^{2} \sqrt{T}+H^{5} d^{4}+\epsilon d H T\left(1+\epsilon d H^{2}\right)\right)
\]
- Order optimal \(\sqrt{T}\)
- Long "warm-up" phase
- Factor \(\sqrt{H d}\) worse than OptLSVI [Jin et al., 2019]
- Linear regret depending on \(\epsilon\)

\section*{Computationally Inefficient}

Complexity of Opt-LSVI and Opt-RLSVI
- Space \(\mathcal{O}\left(d^{2} H+d A H K\right)\)
- Time \(\mathcal{O}\left(d^{2} A H K^{2}\right)\)

Move to incremental model-free
\(\Rightarrow\) recursive least-squares
Issues:
1 Tracking a moving non-linear target
2 How to handle randomization

\section*{Pros and Cons}
- complexity
- ...

\section*{Open Questions in Low-Rank MDPs}

Continuous state-action space
A Assumption: \(\mathcal{S} \times \mathcal{A} \subseteq \mathbb{R}^{d}\), linear dynamics and quadratic reward
\[
\begin{aligned}
s_{h+1} & =A_{h} s_{h}+B_{h} a_{h}+\epsilon_{h} \\
r_{h}(s, a) & =s^{\top} Q_{h} s+a^{\top} R_{h} a
\end{aligned}
\]
\(\Rightarrow\) Efficient computation of \(\pi^{\star}\)

\section*{Model-based}
- Optimism: \(\widetilde{\mathcal{O}}(\sqrt{T})\) [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh et al., 2018]
- Randomization: \(\widetilde{\mathcal{O}}(\sqrt{T})\) [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

\section*{Model-free?}
*Bayesian regret or 1-dimensional guarantees

\section*{Continuous state-action space \(\mathbb{B}\)}

A Assumption: \(\mathcal{S} \times \mathcal{A} \subseteq \mathbb{R}^{d}\), linear dynamics and quadratic reward
\[
\begin{aligned}
s_{h+1} & =A_{h} s_{h}+B_{h} a_{h}+\epsilon_{h} \\
r_{h}(s, a) & =s^{\top} Q_{h} s+a^{\top} R_{h} a
\end{aligned}
\]
\(\Rightarrow\) Efficient computation of \(\pi^{\star} \mathbb{B}\)

\section*{Model-based}
- Optimism: \(\widetilde{\mathcal{O}}(\sqrt{T})\) [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh et al., 2018]
- Randomization: \(\widetilde{\mathcal{O}}(\sqrt{T})\) [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

Model-free ?
*Bayesian regret or 1-dimensional guarantees

\section*{Continuous state-action space \(\mathbb{B}\)}

A Assumption: \(\mathcal{S} \times \mathcal{A} \subseteq \mathbb{R}^{d}\), linear dynamics and quadratic reward
\[
\begin{aligned}
s_{h+1} & =A_{h} s_{h}+B_{h} a_{h}+\epsilon_{h} \\
r_{h}(s, a) & =s^{\top} Q_{h} s+a^{\top} R_{h} a
\end{aligned}
\]
\(\Rightarrow\) Efficient computation of \(\pi^{\star} \mathbb{B}\)

\section*{Model-based}
- Optimism: \(\widetilde{\mathcal{O}}(\sqrt{T})\) [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh et al., 2018]
- Randomization: \(\widetilde{\mathcal{O}}(\sqrt{T})\) [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

Model-free ?

\section*{exact, model-based, and strong assumption}
*Bayesian regret or 1-dimensional guarantees

\section*{Questions?}

Website
https://rlgammazero.github.io

Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear quadratic systems. In COLT, volume 19 of JMLR Proceedings, pages 1-26. JMLR.org, 2011.
Yasin Abbasi-Yadkori, Nevena Lazic, and Csaba Szepesvári. Regret bounds for model-free linear quadratic control. CoRR, abs/1804.06021, 2018.
Marc Abeille and Alessandro Lazaric. Thompson sampling for linear-quadratic control problems. In AISTATS, volume 54 of Proceedings of Machine Learning Research, pages 1246-1254. PMLR, 2017.
Marc Abeille and Alessandro Lazaric. Improved regret bounds for thompson sampling in linear quadratic control problems. In ICML, volume 80 of Proceedings of Machine Learning Research, pages 1-9. PMLR, 2018.
Mohammad Gheshlaghi Azar, lan Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 263-272. PMLR, 2017.
Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine Learning Proceedings 1995, pages \(30-37\). Morgan Kaufmann, San Francisco (CA), 1995. ISBN 978-1-55860-377-6.
Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of Machine Learning Research, 12(May):1655-1695, 2011.
Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. CoRR, abs/1912.05830, 2019.
Alon Cohen, Avinatan Hassidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal Talwar. Online linear quadratic control. In ICML, volume 80 of JMLR Workshop and Conference Proceedings, pages 1028-1037. JMLR.org, 2018.
Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic regulators efficiently with only \(\sqrt{ } \mathrm{t}\) regret. In ICML, volume 97 of Proceedings of Machine Learning Research, pages 1300-1309. PMLR, 2019.
Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for robust adaptive control of the linear quadratic regulator. In NeurIPS, pages 4192-4201, 2018.

Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation sufficient for sample efficient reinforcement learning? CoRR, abs/1910.03016, 2019.
Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Input perturbations for adaptive regulation and learning. CoRR, abs/1811.04258, 2018.
Maryam Fazel, Rong Ge, Sham M. Kakade, and Mehran Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. In ICML, volume 80 of Proceedings of Machine Learning Research, pages 1466-1475. PMLR, 2018.
Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International statistical review, 70(3):419-435, 2002.
Morteza Ibrahimi, Adel Javanmard, and Benjamin Van Roy. Efficient reinforcement learning for high dimensional linear quadratic systems. In NIPS, pages 2645-2653, 2012.
Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably efficient? In NeurIPS, pages 4868-4878, 2018.
Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement learning with linear function approximation. CoRR, abs/1907.05388, 2019.
K. Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret bounds for undiscounted continuous reinforcement learning. In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 524-532. JMLR.org, 2015.
Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Pre-publication version, 2018. URL http://downloads.tor-lattimore.com/banditbook/book.pdf.
Tor Lattimore and Csaba Szepesvári. Learning with good feature representations in bandits and in RL with a generative model. CoRR, abs/1911.07676, 2019.
Rémi Munos. Introduction to reinforcement learning and multi-armed bandits. NETADIS Summer School, 2013.

Chengzhuo Ni, Lin F. Yang, and Mengdi Wang. Learning to control in metric space with optimal regret. In Allerton, pages 726-733. IEEE, 2019.
Jungseul Ok, Alexandre Proutière, and Damianos Tranos. Exploration in structured reinforcement learning. In NeurIPS, pages 8888-8896, 2018.
Ronald Ortner and Daniil Ryabko. Online regret bounds for undiscounted continuous reinforcement learning. In NIPS, pages 1772-1780, 2012.
Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pages 2377-2386. JMLR.org, 2016.
Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value functions. Journal of Machine Learning Research, 20(124):1-62, 2019. URL http://jmlr.org/papers/v20/18-339.html.
Yi Ouyang, Mukul Gagrani, and Rahul Jain. Control of unknown linear systems with thompson sampling. In Allerton, pages 1198-1205. IEEE, 2017.
Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Exploration bonus for regret minimization in discrete and continuous average reward mdps. In NeurIPS, pages 4891-4900, 2019.
Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In NeurlPS, pages 14410-14420, 2019.

Sean R. Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization for episodic reinforcement learning in metric spaces. Proc. ACM Meas. Anal. Comput. Syst., 3(3), December 2019. doi: 10.1145/3366703. URL https://doi.org/10.1145/3366703.

Aleksandrs Slivkins. Contextual bandits with similarity information. J. Mach. Learn. Res., 15(1):2533-2568, 2014.

Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric spaces. CoRR, abs/1905.00475, 2019.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features. In ICML, volume 97 of Proceedings of Machine Learning Research, pages 6995-7004. PMLR, 2019a.
Lin F. Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and regret bound. CoRR, abs/1905.10389, 2019b.
Andrea Zanette, David Brandfonbrener, Matteo Pirotta, and Alessandro Lazaric. Frequentist regret bounds for randomized least-squares value iteration. CoRR, abs/1911.00567, 2019.```


[^0]:    *Not reporting bounds because in infinite-horizon and/or slightly different assumptions.

[^1]:    * figure by Sinclair et al. [2019]

[^2]:    * example from [Munos, 2013]

