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History: Regret Minimization in Smooth MDPs
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Smooth Problems
4

S ×A is a compact metric space

d[(s, a), (s′, a′)] is a metric on S ×A

Q? is a smooth function: ∀(s, a, s′, a′) and ∀h ∈ [H]

|Q?h(s, a)−Q?h(s′, a′)| ≤ Lq,h d
[
(s, a), (s′, a′)

]
Examples

- Discrete and continuous state-action spaces

- Deterministic systems with metric structure

- Stochastic systems with regularity assumptions on the transitions
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Smooth MDPs
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A smooth continuous MDP has
S,A measurable spaces
Transitions and rewards are “smooth”: ∀(s, a, s′, a′) and ∀h ∈ [H]

dM
[
ph(·|s, a), ph(·|s′, a′)

]
≤ λp d

[
(s, a), (s′, a′)

]
|rh(s, a)− rh(s′, a′)| ≤ λr d

[
(s, a), (s′, a′)

]

� Smooth transitions and rewards =⇒ smooth Q-function ( 6⇐=)

Total Variation 7→ Lq,h = 2λp(H − h) + λr, Wasserstein 7→ Lq,h =
H∑

h′=h

λrλ
H−h′
p

� Total Variation Liptschitz =⇒ Wasserstein Lipschitz [Gibbs and Su, 2002]

e.g., Total Variation
(TV) or Wasserstein
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Lower-Bound in Metric Space
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Theorem (Sinclair et al. [2019])
Consider a metric space S ×A such that diam(S ×A) ≤ dmax. Let dc be the covering
dimension with parameter c of the space S ×A

dc = inf
{
d ≥ 0 | Nr ≤ cr−d,∀r ∈ (0, dmax]

}
where Nr is the packing number.
Then there exists a distribution over problem instances such that for any algorithm, the
regret is at least

Ω
(
H3/2K(dc+1)/(dc+2)c1/(dc+2)

)
� Adapted from RL [Jin et al., 2018] and the contextual bandit case [Slivkins, 2014]
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Online Learning in Smooth Problems
7

Model-based
Estimate both p and r
+ Counterfactual reasoning - Computational complexity

Optimism: [Ortner and Ryabko, 2012, Lakshmanan et al., 2015, Qian et al., 2019]*
Randomization: ?

Model-free algorithms
Eschew learning transitions and only focus on learning good state-action mappings
+ No need of planning - Estimate only Q?

Optimism: Q-learning Õ(H5/2K(d+1)/(d+2)) [Song and Sun, 2019, Sinclair et al., 2019]

Randomization: ?

*Not reporting bounds because in infinite-horizon and/or slightly different assumptions.
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Solution Methods
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Uniform discretization (e.g., ε-net)
[Ortner and Ryabko, 2012, Lakshmanan et al., 2015, Qian et al., 2019, Song and Sun, 2019]

Adaptive discretization (e.g., zooming)
adapt the discretization over space and time in a data-driven manner [Sinclair et al., 2019]

∗ figure by Sinclair et al. [2019]
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Adaptive Partitioning in Bandits
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Find online the maximum of a function f .
Assume f is Lipschitz: |f(x)− f(y)| ≤ d(x, y).

At each time step t, select xt
Observe f(xt)

Goal: maximize sum of f(xt)
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Adaptive Partitioning in Bandits
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Evaluating f at a point x provides an upper-bound (f is Lipschitz)

* example from [Munos, 2013]
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Adaptive Partitioning in Bandits
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Refine upper-bound
What point to select? Optimism

* example from [Munos, 2013]
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Adaptive Partitioning in Bandits
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We have noisy observations. How to define high-probability upper-bound?

* example from [Munos, 2013]
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Adaptive Partitioning in Bandits
13

Fix a ball Bi (interval in 1D) containing ni points {xt}. Then, ∀y ∈ Bi

1

ni

ni∑
t=1

rt +

√
log 1/δ

2ni
≥ 1

ni

ni∑
t=1

f(xt) ≥ f(y)− diam(Bi)

since f is Lipschitz * example from [Munos, 2013]
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Adaptive Partitioning in Bandits
14

How to increase accuracy? Increase granularity over time (tree structure)
Split is a trade-off between confidence interval and ball radius

bias-variance trade-off
* example from [Munos, 2013]
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Adaptive Partitioning: Example
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f(x) =
1

2
(sin(13x) sin(27x) + 1) satisfies the local smoothness assumption

f(x) ≥ f(x?)− l(x, x?) with
l1(x, y) = 14|x− y| (i.e., f is globally Lipschitz)
l2(x, y) = 222|x− y|2 (i.e., f is locally quadratic)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

* example from [Munos, 2013]
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Adaptive Partitioning: Example
16

. . . . . .

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

* example from [Munos, 2013]
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Adaptive Partitioning: Example
16

. . . . . .

Stochastic bandits Adversarial bandit Games MCTS Optimistic optimization Unknown smoothness Noisy rewards Planning

Experiments [2]
Using ℓ1(x , y) = 14|x − y | (i.e., f is globally Lipschitz). n = 150.

The trees Tn built by DOO after n = 150 evaluations.
* example from [Munos, 2013]
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Adaptive Optimistic Q-Learning (AdOpt-QL)
[Sinclair et al., 2019]

17

Uses hierachical covering of state-action space
• Starts from a single partition covering all the space
• Adapts the granularity of the partition based on rewards and visits

Phk = {Bi} : S ×A ⊆
⋃
i

Bi

For each ball B we store
• An optimistic estimate Qh(B) of Q?
• A visit counter Nh(B)

Ghavamzadeh, Lazaric and Pirotta



AdOpt-QL
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Input: S, A, rh, ph, Lqh
Initialize Qh(B) = H and Nh(B) = 0 for all h = [H], with B = S ×A

for k = 1, . . . ,K do // episodes
Observe initial state s1 (arbitrary)
for h = 1, . . . , H do

Select region containing sh: B = arg max
B∈relh(sh)

Qh(B)

Execute any action a such that (sh, a) ∈ domh(B)
Observe rh and sh+1

Set Nh(B) = Nh(B) + 1
Update

Q̂h(B) = (1− αt)Q̂h(B) + αt
(
rh + V̂h+1(sh+1) + bt

)
Set V̂h(s) = min

{
H, max

B′∈relh(s)
Q̂h(B′)

}
If Nh(B) ≥ g(B) then SplitBall(B, h, k)

end
end

As in Opt-QL

Refine state-action ag-
gregation

Ghavamzadeh, Lazaric and Pirotta



AdOpt-QL: Action Selection
19

Traverse the
hierachical structure
based on Q and shk
Optimistic selection
of the ball

B = arg max
B

Qh(B)

such that shk ∈ B
Play random action
in B

h,i
B

B
h+1,2i−1

B
h+1,2i

(H  ,I  )n n

Followed path

Pulled point Xn

Selected node

Figure 1: Illustration of the node selection procedure in round n. The tree represents Tn. In
the illustration, Bh+1,2i−1(n − 1) > Bh+1,2i(n − 1), therefore, the selected path included the node
(h+ 1, 2i− 1) rather than the node (h+ 1, 2i).

Computational complexity. At the end of round n, the size of the active tree Tn is at most n,
making the storage requirements of HOO linear in n. In addition, the statistics and B–values of
all nodes in the active tree need to be updated, which thus takes time O(n). HOO runs in time
O(n) at each round n, making the algorithm’s total running time up to round n quadratic in n. In
Section 4.3 we modify HOO so that if the time horizon n0 is known in advance, the total running
time is O(n0 lnn0), while the modified algorithm will be shown to enjoy essentially the same regret
bound as the original version.

4 Main results

We start by describing and commenting on the assumptions that we need to analyze the regret of
HOO. This is followed by stating the first upper bound, followed by some improvements on the basic
algorithm. The section is finished by the statement of our results on the minimax optimality of
HOO.

4.1 Assumptions

The main assumption will concern the “smoothness” of the mean-payoff function. However, some-
what unconventionally, we shall use a notion of smoothness that is built around dissimilarity func-
tions rather than distances, allowing us to deal with function classes of highly different smoothness
degrees in a unified manner. Before stating our smoothness assumptions, we define the notion of a
dissimilarity function and some associated concepts.

Definition 2 (Dissimilarity) A dissimilarity ℓ over X is a non-negative mapping ℓ : X 2 → R

satisfying ℓ(x, x) = 0 for all x ∈ X .

9

* figure from [Bubeck et al., 2011]
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AdOpt-QL: Uncertainty
20

Qk+1
h (B) = (1− αt )Qhk(B) + αt(rh + bh(t) + V k

h+1(sh+1))

bh(t) = 2

√
H3 log(4HK/δ)

t︸ ︷︷ ︸
estimation error

+
dmaxLq,h√

t︸ ︷︷ ︸
discretization error

U t = Nhk(B) + 1 i.e., number of visits

U diam(S ×A) ≤ dmax

αt =
H + 1

H + t
as in [Jin et al., 2018]

exploration bonus
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AdOpt-QL: Refining the Partition
21

If Nk+1
h (B) ≥

(
dmax

radi(B)

)2

then

Split ball

Cover dom(B) using a
1

2
radi(B)-net

� when the number of samples is large, variance dominates the bias
=⇒ better to split

� new balls inherit properties of the parent ball
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AdOpt-QL: Regret
22

Theorem (Thm. 4.1 by Sinclair et al. [2019])

For any smooth MDP with Lqh-Lipschitz Q-function and non-stationary transitions,
AdOpt-QL, with high probability, suffers a regret

R(K,M?,AdOpt-QL) = Õ
(
c1/(dc+2) H5/2 K(dc+1)/(dc+2)

)
Order optimal in c and K
Factor H worse than the lower-bound

� same bound for [Song and Sun, 2019] with uniform discretization

Ghavamzadeh, Lazaric and Pirotta



1 Smooth MDPs

2 Linear Structure
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History: Regret Minimization
Linear Structure
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Linear Function Approximation 25

Action-value functions
Feature map φh : S ×A → Rd

Function approximation Qh(s, a) = φh(s, a)Tθh

Ghavamzadeh, Lazaric and Pirotta



Least-Squares Value Iteration (LSVI)
26

Input: Dataset Dk = (shi, ahi, rhi)
H,k
h=1,i=1

Set θH+1 = 0 and Q̂H+1(s, a) = φH+1(s, a)TθH+1

for h = H, . . . , 1 do // backward induction
Compute

yhi = rhi + max
a∈A

Q̂h+1,k(sh+1,i, a) = rhi + V̂h+1,k(sh+1,i) , i = 1, . . . , k

Build regression dataset Dreg
h = {φh(shi, ahi), yhi}i

Compute

Σhk =

k∑
i=1

φh(shi, ahi)φh(shi, ahi)
T + λI, Ωhk =

k∑
i=1

φh(shi, ahi)yhi

θ̂hk = arg min
θ

1

k

k∑
i=1

(
yhi − φh(shi, ahi)

Tθ
)2

+ λ‖θ‖22

= Σ−1
hk Ωhk

end
return {θ̂hk}Hh=1

Bootstrapping estimates
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Least-Squares Value Iteration (LSVI)
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Least-Squares Value Iteration (LSVI)
27
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Least-Squares Value Iteration (LSVI)
27

Q?(s, a)

Q̂(s, a)

H

1

H1

Exact VI

LSVI

errors compound exponentially
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Bad News
28

Theorem ([Du et al., 2019])
Let assume that φh approximates well the action-value function of any policy π

min
θ
‖Qπh(·)− φh(·)Tθ‖∞ ≤ ε.

There exists an MDP such that any algorithm that returns a 1/2-optimal policy with
0.9 probability requires

T ≥ Ω
(

min{|S|, 2H , exp(dε2/16)}
)

[Baird, 1995] counter-examples for LSVI-like algorithms

Ghavamzadeh, Lazaric and Pirotta



Not So Bad News
29

Theorem ([Lattimore and Szepesvári, 2019])
Let assume that φh approximates well the action-value function of any policy π

min
θ
‖Qπh(·)− φh(·)Tθ‖∞ ≤ ε.

Approximate policy iteration using a generative model returns a O(ε
√
d)-optimal policy

with
T ≤ Õ

( d
ε2

)

, API vs LSVI, generative model vs RL

Ghavamzadeh, Lazaric and Pirotta
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Some Good News
Low-Rank MDPs [Yang and Wang, 2019a]

30

A low-rank (linear) MDP M = 〈S,A, φh, rh, ph, H〉
S × A is a measurable space

Dynamics is low rank, ψh : S → Rd

ph(s′|s, a) = φh(s, a)T ψh(s′)

Reward has linear structure, θrh ∈ Rd

rh(s, a) = φh(s, a)T θrh

� examples are tabular MDPs, simplex feature space (e.g., mixture models)

� This is a generalization of Linear Contextual Bandits [Lattimore and Szepesvári, 2018]
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Some Good News
Low-Rank MDPs

31

For every policy π = (π1, . . . , πH) and h ∈ [H], Qπh is linear in φh

Qπh(s, a) = rh(s, a) + Es′|s,a[V π
h+1(s

′)]

= φh(s, a)Tθrh +

∫
s′
φh(s, a)Tψh(s′)V π

h+1(s
′)ds′

= φh(s, a)T
(
θrh +

∫
s′
ψh(s′)V π

h+1(s
′)ds′

)
︸ ︷︷ ︸

independent from (s,a)

= φh(s, a)Tθπh

o very strong structure!
any function V πh+1 is transformed into a linear function by the Bellman operator
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Some Good News
32

o Assumption: MDP is approximately low-rank w.r.t. features φh

Model-based

Optimism: Õ(H2d3/2
√
T ) [Yang and Wang, 2019b]*

Randomization: ?

Model-free

Optimism: Opt-LSVI Õ(H3/2d3/2
√
T ) [Jin et al., 2019]**

Randomization: Opt-RLSVI Õ(H2d2
√
T ) [Zanette et al., 2019]***

- continuous MDPs, approximate low-rank, model-free
, not “that” scalable, strong assumption (see later)

*Depending on further (light) assumptions can be improved from d
3/2 to d

**If the MDP is ε-low-rank, additional term Õ(εdHT )

***If the MDP is ε-low-rank, additional term Õ(εdHT (1 + εdH
2
)

Ghavamzadeh, Lazaric and Pirotta
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2
)

Ghavamzadeh, Lazaric and Pirotta



Lower-Bound for Low Rank MDPs
33

Theorem ([Jin et al., 2019])

For any low-rank MDP M?, any algorithm A suffers at least a regret

R(K,M?,A) = Ω(d1/2H
√
T )

Ghavamzadeh, Lazaric and Pirotta



OptLSVI
[Jin et al., 2019]

34

Input: φh
Initialize Qh1(s, a) = 0 for all (s, a) ∈ S ×A and h = 1, . . . , H, D1 = ∅

for k = 1, . . . ,K do // episodes
Observe initial state s1k (arbitrary)

Run LSVI with UCB on Dk
for h = 1, . . . , H do

Execute ahk = πhk(shk) = arg max
a

Q̂hk(shk, a)

Observe rhk and sh+1,k

end
Add trajectory (shk, ahk, rhk)Hh=1 to Dk+1

end

Ghavamzadeh, Lazaric and Pirotta



LSVI with Upper-Confidence Bounds
35

Input: Dataset Dk = (shi, ahi, rhi)
H,k
h=1,i=1

Set θH+1 = 0 and Q̂H+1(s, a) = φH+1(s, a)TθH+1

for h = H, . . . , 1 do // backward induction
Compute

yhi = rhi + V̂h+1,k(sh+1,i), i = 1, . . . , k

Build regression dataset Dreg
h = {φh(shi, ahi), yhi}i

Compute

Σhk =

k∑
i=1

φh(shi, ahi)φh(shi, ahi)
T + λI, Ωhk =

k∑
i=1

φh(shi, ahi)yhi

θ̂hk = Σ−1
hk Ωhk

Add uncertainty
Q̂hk(s, a) = φh(s, a)Tθ̂hk + bhk(s, a)

Set V̂hk(s) = min
{
H,max

a∈A
Q̂hk(s, a)

}
end
return {θ̂hk}Hh=1

Ghavamzadeh, Lazaric and Pirotta



Measuring Uncertainties 36

Theorem (Lem. B.4-B.5 of [Jin et al., 2019])

Consider the filtration composed by the history generated by the algorithm at any point

during its runtime. If ‖φh(s, a)‖2 ≤ Lφ, ‖θrh‖2 ≤ Lr and
∫
s
‖ψh(s)‖2 ≤ Lψ, then with

probability at least 1− δ, for all (s, a, h, k), we have∣∣φh(s, a)Tθ̂kh −Q?h(s, a)
∣∣ ≤ αk√φh(s, a)TΣ−1hk φh(s, a) := bhk(s, a)

where

αk ∝ dH

√
log

(
dHkLφLψLrλ

δ

)
+
√
λLφLθ

� ‖φh(s, a)‖Σ−1
hk

measures the correlation between φh(s, a) and the features observed so far
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OptLSVI: Regret 37

Theorem

Let λ = 1, Lψ = Lr =
√
d and Lφ = 1. For any εlow rank MDP M w.r.t. features φh,

OptLSVI with αk = O(dH + εH
√
dk), with high probability, suffers a regret

R(K,M?, OptLSV I) = O
(
d3/2H3/2

√
T + εdHT

)
Order optimal

√
T

Factor d
√
H worse than the lower-bound

Linear dependence in ε

�
√
H might be saved by moving from Hoeffding to Bernstein bound

see tabular RL [e.g., Azar et al., 2017]
, we don’t know a Bernstein bound for the Least-Square estimator
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Randomized Least-Squares Value Iteration (RLSVI)
[Osband et al., 2016]

38

Input: φh
Initialize Qh1(s, a) = 0 for all (s, a) ∈ S ×A and h = 1, . . . , H, D1 = ∅

for k = 1, . . . ,K do // episodes
Observe initial state s1k (arbitrary)

Run RLSVI on Dk
for h = 1, . . . , H do

Execute ahk = πhk(shk) = arg max
a

Q̂hk(shk, a)

Observe rhk and sh+1,k

end
Add trajectory (shk, ahk, rhk)Hh=1 to Dk+1

end
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Randomized LSVI
39

Q?h(s, a)

H

1

H1

?

?

RLSVI
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Q?h(s, a)

Qh(s, a)

H

1

H1

?

?

RLSVI

?
?

?
?

?
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Randomized LSVI
39

Q?h(s, a)

Qh(s, a)

H

1

H1

?

?

RLSVI

?
?

?
?

?

randomization increases the noise
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Randomized Least-Squares Value Iteration (RLSVI)
40

Input: Dataset Dk = (shi, ahi, rhi)
H,k
h=1,i=1

Set θH+1 = 0 and QH+1(s, a) = φH+1(s, a)TθH+1

for h = H, . . . , 1 do // backward induction
Compute

yhi = rhi + max
a∈A

Qh+1,k(sh+1,i, a) = rhi + V h+1,k(sh+1,i) , i = 1, . . . , k

Build regression dataset Dreg
h = {φh(shi, ahi), yhi}i

Compute

θ̂hk = Σ−1
hk Ωhk; Ωhk =

k∑
i=1

φh(shi, ahi)yhi

Sample ξhk ∼ N
(
0, σ2Σ−1

hk

)
Set θhk = θ̂hk + ξhk

end
return {θhk}Hh=1

Bootstrapping randomized
estimates
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RLSVI as Regression on Perturbed Data
[Osband et al., 2019, Russo, 2019]

41

Bayesian Update

True parameter is θ? ∈ Rd ⇒ we want to estimate it
Assume Gaussian prior N (θ, λI)

Dataset D = (xi, yi)
N
i=1, where

yi = xTi θ + εi , εi ∼ N (0, σ2)

Conditional posterior

θ?|D ∼ N
(

Σ−1
(

1

σ2
XTy +

1

λ
θ

)
,Σ−1

)
︸ ︷︷ ︸

:=µp
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RLSVI as Regression on Perturbed Data
42

We can sample µp by fitting a least-squares estimate

θ̂ = arg min
θ

1

σ2

N∑
i=1

(
yi + ωi − xTi θ

)
+

1

λ
‖ θ̃ − θ‖22

Perturbation
ωi ∼ N (0, σ2)

Sample from prior
θ̃ ∼ N (θ, λI)

⇒ θ̂ ∼ µp

For linear models,
poster sampling = regularized least-squares on perturbed data

For tabular MDPs, xi = es,a and θ = Q
backward induction on randomized rewards = RLSVI
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Opt-RLSVI: Regret 43

Theorem (to appear at AISTATS)

For any ε-low rank MDP w.r.t. features φh, Mod-RLSVI with α = 1/(σ
√
d) and

σ = O(
√
Hd+ εH

√
dk), with high probability, suffers a regret

R(K) = Õ
(
H2d2

√
T +H5d4 + εdHT (1 + εdH2)

)
Order optimal

√
T

Long “warm-up” phase
Factor

√
Hd worse than OptLSVI [Jin et al., 2019]

Linear regret depending on ε
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Computationally Inefficient
44

Complexity of Opt-LSVI and Opt-RLSVI

Space O(d2H + dAHK)

Time O(d2AHK2)

Move to incremental model-free
⇒ recursive least-squares

Issues:
1 Tracking a moving non-linear target
2 How to handle randomization
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Pros and Cons
45

complexity
...
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Open Questions in Low-Rank MDPs
46

1 TODO
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LQR 47

Continuous state-action space

-

o Assumption: S ×A ⊆ Rd, linear dynamics and quadratic reward

sh+1 = Ahsh +Bhah + εh

rh(s, a) = sTQhs+ aTRha

⇒ Efficient computation of π?

-

Model-based

Optimism: Õ(
√
T ) [Abbasi-Yadkori and Szepesvári, 2011, Cohen et al., 2018, Faradonbeh

et al., 2018]

Randomization: Õ(
√
T ) [Ouyang et al., 2017, Abeille and Lazaric, 2018]*

Model-free ?

, exact, model-based, and strong assumption

*Bayesian regret or 1-dimensional guarantees
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Questions?

Website
https://rlgammazero.github.io

https://rlgammazero.github.io
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