facebook Artificial Intelligence Research

Exploration-Exploitation in Reinforcement Learning Part 3 – Scaling up Exploration to DeepRL

Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta Facebook AI Research

Outline

1 Optimistic Exploration in Deep RL

2 Random Exploration in Deep RL

Website https://rlgammazero.github.io

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

Exploration in DeepRL

these are easy

this is hard, *almost* impossible

facebook Artificial Intelligence Research

Random exploration sometimes work! PONG GIF

Montezuma with random actions! Link

Montezuma's Revenge: Level 1

facebook Artificial Intelligence Research

The Four Ingredients Recipe

- Build accurate estimators
- 2 Evaluate the uncertainty of the prediction
- 3 Define a mechanism to combine estimation and uncertainty
- 4 Execute the best policy

The Four Ingredients Recipe

Optimism in face of uncertainty

1 Build accurate estimators

$$\widehat{M}_k \Rightarrow V_{\widehat{M}_k}^{\pi}$$

2 Evaluate the uncertainty of the estimators

$$B_{hk}^r(s,a) := \left[\widehat{r}_{hk}(s,a) - \beta_{hk}^r(s,a), \ \widehat{r}_{hk}(s,a) + \beta_{hk}^r(s,a) \right]$$
$$B_{hk}^p(s,a) := \left\{ p(\cdot|s,a) \in \Delta(\mathcal{S}) : \ \|p(\cdot|s,a) - \widehat{p}_{hk}(\cdot|s,a)\|_1 \le \ \beta_{hk}^p(s,a) \right\}$$

Befine a mechanism to combine estimation and uncertainty

$$\pi_k = \arg\max_{\pi} \max_{M \in \mathcal{M}_k} V_M^{\pi}$$

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

The Four Ingredients Recipe

Posterior Sampling

- **1** Build accurate estimators
- 2 Evaluate the uncertainty of the estimators

 $\forall \Theta, \ \mathbb{P}(M^{\star} \in \Theta | H_t, \mu_1) = \mu_t(\Theta) \quad \mu_t \text{ updated using Bayes' rule}$

3 Define a mechanism to combine estimation and uncertainty

$$\pi_k = \arg\max_{\pi} V_{\widetilde{M}_k}^{\pi}, \qquad \widetilde{M}_k \sim \mu_k$$

"Practical" Limitations

Optimism in face of uncertainty

Confidence intervals

$$\beta_t^r(s,a) \propto \sqrt{\frac{\log(N_t(s,a)/\delta)}{N_t(s,a)}} \qquad \beta_t^p(s,a) \propto \sqrt{\frac{S\log(N_t(s,a)/\delta)}{N_t(s,a)}}$$

$$\pi_t = \arg\max_{\pi} \max_{M \in \mathcal{M}_t} V_M^{\pi}$$

Posterior sampling

Posterior (dynamics for any state-action pair)

 $\mathsf{Dirichlet}\big(N_t(s_1'|s,a), N_t(s_2'|s,a), \dots, N_t(s_S'|s,a)\big)$

Update/sample from a unstructured/non-conjugate posteriors

History: Exploration in DeepRL

Outline

1 Optimistic Exploration in Deep RL

2 Random Exploration in Deep RL

General Scheme

1 Estimate a "proxy" for the number of visits $N(s_t)$

2 Add an *exploration bonus* to the rewards

$$\widetilde{r}_t^+ = r_t + \frac{c}{\sqrt{\widetilde{N}(s_t)}}$$

3 Run any DeepRL algorithm on $\mathcal{D}_t = \{(s_i, a_i, \tilde{r}_i^+, s_{i+1})\}$

facebook Artificial Intelligence Research

Does it work?

* figures from [Bellemare et al., 2016]

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

What to Count?

We never see the same state twice (or it is very unlikely)!

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

How difficult is to learn a state representation?

$\bigcirc: V = 6.27 \qquad \bigcirc: V = 6.14 \qquad \bigtriangleup: V = 6.17 \qquad \bigtriangleup: V = 6.16 \qquad \diamondsuit: V = 4.44 \qquad \diamondsuit: V = 4.35$

How difficult is to learn a state representation?

[Tang et al., 2017]

Algorithm 1: Count-based exploration through static hashing, using SimHash

- 1 Define state preprocessor $g: \mathcal{S} \to \mathbb{R}^D$
- 2 (In case of SimHash) Initialize $A \in \mathbb{R}^{k \times D}$ with entries drawn i.i.d. from the standard Gaussian distribution $\mathcal{N}(0, 1)$
- 3 Initialize a hash table with values $n(\cdot) \equiv 0$
- 4 for each iteration j do
- 5 Collect a set of state-action samples $\{(s_m, a_m)\}_{m=0}^M$ with policy π
- 6 Compute hash codes through any LSH method, e.g., for SimHash, $\phi(s_m) = \text{sgn}(Ag(s_m))$
- 7 Update the hash table counts $\forall m : 0 \le m \le M$ as $n(\phi(s_m)) \leftarrow n(\phi(s_m)) + 1$

8 Update the policy π using rewards $\left\{ r(s_m, a_m) + \frac{\beta}{\sqrt{n(\phi(s_m))}} \right\}_{m=0}^M$ with any RL algorithm

Use *locality-sensitive hashing* to discretize the input

- Encode the state into a k-dim vector by random project small k = more hash collisions
- Use the sign to discretize small $\phi(s) \in \{-1, 1\}^k$
- Count on discrete hashed-states

[Tang et al., 2017]

Algorithm 1: Count-based exploration through static hashing, using SimHash

- 1 Define state preprocessor $g: \mathcal{S} \to \mathbb{R}^D$
- 2 (In case of SimHash) Initialize $A \in \mathbb{R}^{k \times D}$ with entries drawn i.i.d. from the standard Gaussian distribution $\mathcal{N}(0, 1)$
- 3 Initialize a hash table with values $n(\cdot) \equiv 0$
- 4 for each iteration j do
- 5 Collect a set of state-action samples $\{(s_m, a_m)\}_{m=0}^M$ with policy π
- 6 Compute hash codes through any LSH method, e.g., for SimHash, $\phi(s_m) = \text{sgn}(Ag(s_m))$
- 7 Update the hash table counts $\forall m : 0 \le m \le M$ as $n(\phi(s_m)) \leftarrow n(\phi(s_m)) + 1$

8 Update the policy π using rewards $\left\{ r(s_m, a_m) + \frac{\beta}{\sqrt{n(\phi(s_m))}} \right\}_{m=0}^{M}$ with any RL algorithm

Use *locality-sensitive hashing* to discretize the input

- Encode the state into a k-dim vector by random project small k = more hash collisions
- Use the sign to discretize small $\phi(s) \in \{-1, 1\}^k$
- Count on discrete hashed-states

$\boldsymbol{\nabla}$ Difficult to define a good hashing function

facebook Artificial Intelligence Research

Improve counts by learning a compression

$$L\left(\{s_n\}_{n=1}^N\right) = -\frac{1}{N} \sum_{n=1}^N \left[\log p(s_n) - \frac{\lambda}{K} \sum_{i=1}^D \min\left\{(1 - b_i(s_n))^2, b_i(s_n)^2\right\}\right]$$

- Entropy loss for the auto-encoder
- "Binarization" loss for the "projection"

[Tang et al., 2017]

Algorithm 2: Count-based exploration using learned hash codes 1 Define state preprocessor $g: S \to \{0, 1\}^D$ as the binary code resulting from the autoencoder (AE)2 Initialize $A \in \mathbb{R}^{k \times D}$ with entries drawn i.i.d. from the standard Gaussian distribution $\mathcal{N}(0,1)$ 3 Initialize a hash table with values $n(\cdot) \equiv 0$ 4 for each iteration *i* do Collect a set of state-action samples $\{(s_m, a_m)\}_{m=0}^M$ with policy π 5 Add the state samples $\{s_m\}_{m=0}^M$ to a FIFO replay pool \mathcal{R} 6 if $j \mod j_{\text{undate}} = 0$ then 7 Update the AE loss function in Eq. (3) using samples drawn from the replay pool 8 $\{s_n\}_{n=1}^N \sim \mathcal{R}$, for example using stochastic gradient descent Compute $g(s_m) = \lfloor b(s_m) \rfloor$, the *D*-dim rounded hash code for s_m learned by the AE 9 Project $g(s_m)$ to a lower dimension k via SimHash as $\phi(s_m) = \operatorname{sgn}(Ag(s_m))$ 10 Update the hash table counts $\forall m : 0 \le m \le M$ as $n(\phi(s_m)) \leftarrow n(\phi(s_m)) + 1$ 11 Update the policy π using rewards $\left\{ r(s_m, a_m) + \frac{\beta}{\sqrt{n(\phi(s_m))}} \right\}_{m=0}^{M}$ with any RL algorithm 12

- Use all past history to update the AE
- AE should not be updated too often we need stable codes!

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

[Bellemare et al., 2016, Ostrovski et al., 2017]

 \blacksquare Density estimation over a countable set ${\mathcal X}$

$$\rho_n(x) = \rho(x|x_1, \dots, x_n) \approx \mathbb{P}[X_{n+1} = x|x_1, \dots, x_n]$$

Recording probability

$$\rho'_n(x) = \rho(x|x_1, \dots, x_n, x) \approx \mathbb{P}[X_{n+2} = x|x_1, \dots, x_n, X_{n+1} = x]$$

Pseudo "local" and "total" counts $\widetilde{N}_n(x)$ and $\widetilde{N}_n(x)$ s.t.
Pseudo "local" and "total" counts $\widetilde{N}_n(x)$ and $\widetilde{N}_n(x)$ s.t.

$$\frac{\widetilde{N}_n(x)}{\widetilde{n}} = \rho_n(x); \qquad \frac{\widetilde{N}_n(x) + 1}{\widetilde{n} + 1} = \rho'_n(x) \quad \Rightarrow \widetilde{N}_n(x) = \frac{\rho_n(x)(1 - \rho'_n(x))}{\rho'_n(x) - \rho_n(x)} = \widetilde{n}\rho_n(x)$$

facebook Artificial Intelligence Research

[Bellemare et al., 2016, Ostrovski et al., 2017]

Density estimation over a countable set X

$$\rho_n(x) = \rho(x|x_1, \dots, x_n) \approx \mathbb{P}[X_{n+1} = x|x_1, \dots, x_n]$$

Recording probability

$$\rho'_n(x) = \rho(x|x_1, \dots, x_n, x) \approx \mathbb{P}[X_{n+2} = x|x_1, \dots, x_n, X_{n+1} = x]$$

Pseudo "local" and "total" counts $\widetilde{N}_n(x)$ and $\widetilde{N}_n(x)$ s.t.
Pseudo "local" and "total" counts $\widetilde{N}_n(x)$ and $\widetilde{N}_n(x)$ s.t.

$$\frac{\widetilde{N}_n(x)}{\widetilde{n}} = \rho_n(x); \qquad \frac{\widetilde{N}_n(x) + 1}{\widetilde{n} + 1} = \rho'_n(x) \quad \Rightarrow \widetilde{N}_n(x) = \frac{\rho_n(x)(1 - \rho'_n(x))}{\rho'_n(x) - \rho_n(x)} = \widetilde{n}\rho_n(x)$$

Any density estimation algorithm (accurate for images)
 e.g., CTS [Bellemare et al., 2014] or PixelCNN [van den Oord et al., 2016]
 Density estimation in continuous spaces is hard

[Bellemare et al., 2016, Ostrovski et al., 2017]

Count-based Exploration Bellemare et al. [2016], Ostrovski et al. [2017]

Montezuma!

Prediction-based Exploration Burda et al. [2019]

What we need is to know how accurate are our predictions.

uncertainty about the model parameters

proxy: prediction error

Sources of prediction errors

- 1 Amount of data 🖒
- 💈 Stochasticity (e.g., noisy-TV) 🖓
- 8 Model misspecification
- 4 Learning dynamics 🐶

Prediction-based Exploration [Burda et al., 2019]

Randomly initialize two instances of the same NN (target θ_* and prediction θ_0)

$$f_{\theta_*}: \mathcal{S} \to \mathbb{R}; \qquad f_{\theta}: \mathcal{S} \to \mathbb{R}$$

Train the prediction network minimizing loss w.r.t. the target network

$$\theta_n = \arg\min_{\theta} \sum_{t=1}^n \left(f_{\theta}(s_t) - f_{\theta_*}(s_t) \right)^2$$

Build "intrinsic" reward

$$r_t^I = \left| f_\theta(s_t) - f_{\theta_*}(s_t) \right|$$

Prediction-based Exploration Burda et al. [2019]

facebook Artificial Intelligence Research

Prediction-based Exploration

General architecture

- Separate extrinsic r_t^E and intrinsic reward r_t^I
- \blacksquare PPO with two heads to estimate V^{I} and V^{E}
- Greedy policy w.r.t. $V^I + cV^E$

"Tricks"

- Rewards should be in the same range
- Use different discount factors for intrinsic and extrinsic rewards

Prediction-based Exploration

Prediction-based Exploration [Burda et al., 2019]

Montezuma!

finds 22 out of the 24 rooms on the first level

28

Montezuma's Revenge

Comparison: not all problems require same amount of exploration [Taïga et al., 2019]

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

30

Go-Explore [Ecoffet et al., 2019]

Green areas indicate intrinsic reward, white

indicates areas where

gorithm is currently exploring.

Issue of intrinsic motivated algorithms: detachment problem

- Forget about promising areas they have visited
- They do not return to them for further exploration

throughout the environment

1. Intrinsic reward (green) is distributed

no intrinsic reward remains, and purple areas indicate where the algorithm is currently

2. An IM algorithm might start by exploring (purple) a nearby area with intrinsic reward

4. Exploration fails to rediscover promising areas it has detached from

*mainly due to model-free nature facebook Artificial Intelligence Research

Go-Explore: Structure [Ecoffet et al., 2019]

1 Exploration

- Select a promising state
- Go to a state
- Explore locally (e.g., randomly)
- Store observations
- Repeat

* similar in spirit to [Lim and Auer, 2012]

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

Go-Explore: Structure

1 Exploration

- Select a promising state
- Go to a state
- Explore locally (e.g., randomly)
- Store observations
- Repeat
- Builds an archive of observed states in latent space
- Archive is sorted by relevance (e.g., IM, novelty)
- Knows a policy to reach an observed state (e.g., by replaying)

* similar in spirit to [Lim and Auer, 2012]

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta
Go-Explore: Structure [Ecoffet et al., 2019]

Exploration

- Select a promising state
- Go to a state
- Explore locally (e.g., randomly)
- Store observations
- Repeat

- Builds an archive of observed states in latent space

- Archive is sorted by relevance (e.g., IM, novelty)
- Knows a policy to reach an observed state (e.g., by replaying)

* similar in spirit to [Lim and Auer, 2012]

2 Robustification

- Against noise
- Imitation learning on best trajectories

Go-Explore on Montezuma

Go-Explore on Montezuma

Using domain knowledge for the state representation, Phase 1 of Go-Explore finds a 238 rooms, solves over 9 levels on average

Image Credit: Wikimedia Foundation

facebook Artificial Intelligence Research

Go-Explore on Pitfall [Ecoffet et al., 2019]

Pitfall!

Optimistic Actor-Critic

- Actor: decides which action to take $\implies \pi$
- Critic: estimates the goodness of an action in a state

Optimistic Actor-Critic [Ciosek et al., 2019]

To limit overestimation (i.e., positive bias)

- use of two *identical* Q-functions
- train them independent

$$Q_{LB} = \min\{Q_1, Q_2\}$$

$\mathbf{\nabla}$ Issues with LB and greedy

* image from [Fujimoto et al., 2018]

(a) Pessimistic underexploration

(b) Directional uninformedness

Optimistic Actor-Critic [Ciosek et al., 2019]

Build an upper-bound to the true Q-value (optimistic Q-value) $\widehat{Q}(s,a) = \mu_Q(s,a) + \beta \sigma_Q(s,a)$

with

$$\mu_Q(s,a) = \frac{1}{2} \Big(Q^1(s,a) + Q^2(s,a) \Big), \quad \sigma_Q(s,a) = \sqrt{\sum_{i \in \{1,2\}} \frac{1}{2} \left(Q^i(s,a) - \mu_Q(s,a) \right)^2}$$

Exploration policy by soft-update (for stability): $\pi_E = \mathcal{N}(\mu_E, \Sigma_E)$

$$(\mu_E, \sigma_E) = \underset{\mu, \Sigma}{\operatorname{arg max}} \mathbb{E}_{a \sim \mathcal{N}(\mu, \Sigma)} \left[\widehat{Q}(s, a) \right]$$

s.t. $KL\left(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu_T, \Sigma_T)\right) \leq \delta$

* for computational efficiency, they fit a linear model on \widehat{Q}

facebook Artificial Intelligence Research

Optimistic Actor-Critic [Ciosek et al., 2019]

Optimistic Actor-Critic: Experiments [Ciosek et al., 2019]

Outline

1 Optimistic Exploration in Deep RL

2 Random Exploration in Deep RL

Randomized Exploration

General Scheme

- **1** Estimate the parameters θ for either policy or value function
- **2** Add randomness to the parameters $\tilde{\theta} = \theta + \text{noise}$
- **3** Run the corresponding (greedy) policy

Remark: changing weights induces a consistent, and potentially very complex, state-dependent change in policy over multiple time steps

- $\implies \mathsf{long-term} \ \mathsf{exploration}$
- $\implies \text{ no dithering }$

Randomized Exploration

General Scheme

- **1** Estimate the parameters θ for either policy or value function
- **2** Add randomness to the parameters $\tilde{\theta} = \theta + \text{noise}$
- **3** Run the corresponding (greedy) policy

Remark: changing weights induces a consistent, and potentially very complex, state-dependent change in policy over multiple time steps

- $\implies \mathsf{long-term} \ \mathsf{exploration}$
- $\implies \text{ no dithering }$

A The randomness needs to represent "uncertainty"

Least-Squares Value Iteration

Estimate Q^* from samples

Input: Dataset $\mathcal{D}_k = (s_{hi}, a_{hi}, r_{hi})_{h=1}^{H,k}$ Set $\widehat{Q}_{H+1}(s, a) = 0$ for $h = H, \ldots, 1$ do // backward induction Compute $y_{hi} = r_{hi} + \max_{a \in A} \widehat{Q}_{h+1,k}(s_{h+1,i}, a) = r_{hi} + \widehat{V}_{h+1,k}(s_{h+1,i}), \quad i = 1, \dots, k$ Build regression dataset $\mathcal{D}_{h}^{\mathsf{reg}} = \{\phi_{h}(s_{hi}, a_{hi}), y_{hi}\}_{i}$ Compute $\widehat{\theta}_{hk} = \arg\min_{\theta} \left\{ \mathcal{L}(\theta, \mathcal{D}^{\mathsf{reg}}) := \frac{1}{k} \sum_{i=1}^{k} (y_{hi} - Q_{hk}(s_{hi}, a_{hi}|\theta))^2 \right\}$ end return $\{\widehat{\theta}_{hk}\}_{h=1}^{H}$

Optimize \mathcal{L} by gradient descent

Randomization on LSVI

How to force exploration

- Perturbe observed rewards
- Perturbe parameters (e.g., based on posterior uncertainty)

Randomized Value Function (RVF) [Osband et al., 2019, 2018, Azizzadenesheli et al., 2018, Lipton et al., 2018, Touati et al., 2019, Osband et al., 2019]

RVF: Reward Perturbation

Input: Dataset $\mathcal{D}_k = (s_{hi}, a_{hi}, r_{hi})_{h=1}^{H,k}$ Set $\widehat{Q}_{H+1}(s, a) = 0$ for $h = H, \ldots, 1$ do // backward induction Perturb rewards $\widetilde{r}_{hi} = r_{hi} + \omega_{hi}, \quad \omega_{hi} \sim \mathcal{N}(0, \sigma^2)$ Compute $\widetilde{y}_{hi} = \widetilde{r}_{hi} + \max_{a \in \mathcal{A}} \widehat{Q}_{h+1,k}(s_{h+1,i}, a) = \widetilde{r}_{hi} + \widehat{V}_{h+1,k}(s_{h+1,i}), \ i = 1, \dots, k$ Build regression dataset $\widetilde{\mathcal{D}}_{h}^{\mathsf{reg}} = \{(s_{hi}, a_{hi}), \widetilde{y}_{hi}\}_{i}$ Sample θ^p from prior Compute $\widehat{\theta}_{hk} = \arg\min_{\theta} \left\{ \mathcal{L}^{B}(\theta, \theta^{p}, \widetilde{\mathcal{D}}^{\mathsf{reg}}) := \frac{1}{k} \sum_{i=1}^{k} (\widetilde{y}_{hi} - Q_{hk}(s_{hi}, a_{hi}|\theta))^{2} + \mathcal{R}(\theta, \theta^{p}) \right\}$ end return $\{\widehat{\theta}_{hk}\}_{h=1}^{H}$

facebook Artificial Intelligence Research

RVF: Perturb Parameters

Input: Dataset $\mathcal{D}_k = (s_{hi}, a_{hi}, r_{hi})_{h=1}^{H,k}$ Bootstrapping randomized Set $\overline{Q}_{H+1}(s,a) = 0$ estimates for $h = H, \ldots, 1$ do // backward induction Compute $\overline{y}_{hi} = r_{hi} + \max_{a \in A} \overline{Q}_{h+1,k}(s_{h+1,i}, a) = r_{hi} + \overline{V}_{h+1,k}(s_{h+1,i}), \ i = 1, \dots, k$ Build regression dataset $\overline{\mathcal{D}}_{h}^{\mathsf{reg}} = \{\phi_{h}(s_{hi}, a_{hi}), \overline{y}_{hi}\}_{i}$ Sample θ^p from prior Compute $\widehat{\theta}_{hk} = \arg\min_{\theta} \left\{ \mathcal{L}^{B}(\theta, \theta^{p}, \overline{\mathcal{D}}^{\mathsf{reg}}) := \frac{1}{k} \sum_{i=1}^{k} (\overline{y}_{hi} - Q_{hk}(s_{hi}, a_{hi}|\theta))^{2} + \mathcal{R}(\theta, \theta^{p}) \right\}$ Sample $\xi_{hk} \sim \mathcal{N}(0, \Sigma_{hk}^{-1})$ Set $\overline{\theta}_{hk} = \widehat{\theta}_{hk} + \underline{\xi_{hk}}$ end return $\{\overline{\theta}_{hk}\}_{h=1}^{H}$

$$\widehat{\theta} = \mathbb{E}[\theta | \mathcal{D}^{\mathsf{reg}}, prior], \ \Sigma^{-1} = Cov[\theta | \mathcal{D}^{\mathsf{reg}}, prior]$$

facebook Artificial Intelligence Research

RLSVI as Regression on Perturbed Data [Osband et al., 2018, 2019]

Bayesian Linear Regression (posterior structure)

- True parameter is $\theta^{\star} \in \mathbb{R}^d \Rightarrow$ we want to estimate it
- Assume Gaussian prior $\mathcal{N}(\overline{\theta}, \lambda I)$
- Dataset $\mathcal{D} = (x_i, y_i)_{i=1}^N$, where

$$y_i = x_i^{\mathsf{T}} \theta^{\star} + \epsilon_i \quad , \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Solve
$$\min_{\theta} \mathcal{L}^B(\theta, \overline{\theta}, \mathcal{D})$$

Conditional posterior μ_p

$$\begin{split} \theta^{\star} | \mathcal{D} \sim \mu_{p} = & \mathcal{N} \bigg(\overbrace{\Sigma^{-1} \left(\frac{1}{\sigma^{2}} X^{\mathsf{T}} y + \frac{1}{\lambda} \overline{\theta} \right)}^{\widehat{\theta}}, \ \Sigma^{-1} \bigg) \\ & \Sigma = \frac{1}{\sigma^{2}} X^{\mathsf{T}} X + \frac{1}{\lambda} I \end{split}$$

RLSVI as Regression on Perturbed Data [Osband et al., 2018, 2019]

$m tilde{O}$ Computational generation of posterior samples for linear Bayesian regression

i.e., we can sample μ_p by fitting a least-squares estimate

RLSVI as Regression on Perturbed Data [Osband et al., 2018, 2019]

m theta Computational generation of posterior samples for linear Bayesian regression

i.e., we can sample μ_p by fitting a least-squares estimate

For linear models,

poster sampling = regularized least-squares on perturbed data

 \blacksquare For tabular MDPs, $x_i = e_{s,a}$ and $\theta = Q$

backward induction on randomized rewards = RLSVI (*see Part 2*)

facebook Artificial Intelligence Research

RVF: issues

Reward Perturbation

- Minimize least-squares problem for any reward structure e.g., by gradient descent
- Not so easy to define the magnitude of the reward perturbation

Posterior Sampling

- Posterior variance
 - easy for linear model
 - hard (almost impossible) for generic models
- A lot of approximate schemas for computing the posterior

Randomized Prior

Algorithm 1 Randomized prior functions for ensemble posterior.

Require: Data $\mathcal{D}\subseteq \{(x,y)|x\in\mathcal{X}, y\in\mathcal{Y}\}$, loss function \mathcal{L} , neural model $f_{\theta}:\mathcal{X}\to\mathcal{Y}$, Ensemble size $K\in\mathbb{N}$, noise procedure data_noise, distribution over priors $\mathcal{P}\subseteq \{\mathbb{P}(p)|p:\mathcal{X}\to\mathcal{Y}\}$.

- 1: for k = 1, .., K do
- 2: initialize $\theta_k \sim \text{Glorot initialization } [23].$
- 3: form $\mathcal{D}_k = \mathtt{data_noise}(\mathcal{D})$ (e.g. Gaussian noise or bootstrap sampling [50]).
- 4: sample prior function $p_k \sim \dot{\mathcal{P}}$.
- 5: | optimize $\nabla_{\theta|\theta=\theta_k} \mathcal{L}(f_{\theta}+p_k;\mathcal{D}_k)$ via ADAM [28].
- 6: return ensemble $\{f_{\theta_k} + p_k\}_{k=1}^K$.

$$\mathcal{L}_{\gamma}(\theta; \theta^{-}, p, \mathcal{D}) := \sum_{t \in \mathcal{D}} \left(r_{t} + \gamma \max_{a' \in \mathcal{A}} \underbrace{(f_{\theta^{-}} + p)}_{(s_{t}', a')}(s_{t}', a') - \underbrace{(f_{\theta} + p)}_{(s_{t}, a_{t})}(s_{t}, a_{t}) \right)^{2}$$

facebook Artificial Intelligence Research

Posterior Distribution for Deep Neural Networks Bayesian DQN [Azizzadenesheli et al., 2018]

A Same tools as in linear bandit

1 Bayesian linear regression with given feature $\phi(s) \in \mathbb{R}^d$ and given target vector for each action y_a

$$\mu_a = (\Phi_a^\mathsf{T} \Phi_a)^{-1} \Phi_a^\mathsf{T} y_a \qquad \Sigma_a = \Phi_a^\mathsf{T} \Phi_a$$

- 2 Draw a weight vector at random w_a ~ N(μ_a, Σ_a⁻¹)
 3 Run the corresponding (greedy) policy a_t = arg max_a Q(s_t, a) := arg max_a w_a^Tφ(s_t)
- **4** Train ϕ with standard NN to estimate Q

Posterior Distribution for Deep Neural Networks Bayesian DQN [Azizzadenesheli et al., 2018]

Game	BDQN	DDQN	DDQN ⁺	Bootstrap	NoisyNet	CTS	Pixel	Reactor	Human	SC	$ SC^+ $	Step
Amidar	5.52k	0.99k	0.7k	1.27k	1.5k	1.03k	0.62k	1.18k	1.7k	22.9M	4.4M	100M
Alien	3k	2.9k	2.9k	2.44k	2.9k	1.9k	1.7k	3.5k	6.9k	-	36.27M	100M
Assault	8.84k	2.23k	5.02k	8.05k	3.1k	2.88k	1.25k	3.5k	1.5k	1.6M	24.3M	100M
Asteroids	14.1k	0.56k	0.93k	1.03k	2.1k	3.95k	0.9k	1.75k	13.1k	58.2M	9.7M	100M
Asterix	58.4k	11k	15.15k	19.7k	11.0	9.55k	1.4k	6.2k	8.5k	3.6M	5.7M	100M
BeamRider	8.7k	4.2k	7.6k	23.4k	14.7k	7.0k	3k	3.8k	5.8k	4.0M	8.1M	70M
BattleZone	65.2k	23.2k	24.7k	36.7k	11.9k	7.97k	10k	45k	38k	25.1M	14.9M	50M
Atlantis	3.24M	39.7k	64.76k	99.4k	7.9k	1.8M	40k	9.5M	29k	3.3M	5.1M	40M
DemonAttack	11.1k	3.8k	9.7k	82.6k	26.7k	39.3k	1.3k	7k	3.4k	2.0M	19.9M	40M
Centipede	7.3k	6.4k	4.1k	4.55k	3.35k	5.4k	1.8k	3.5k	12k	-	4.2M	40M
BankHeist	0.72k	0.34k	0.72k	1.21k	0.64k	1.3k	0.42k	1.1k	0.72k	2.1M	10.1M	40M
CrazyClimber	124k	84k	102k	138k	121k	112.9k	75k	119k	35.4k	0.12M	2.1M	40M
ChopperCmd	72.5k	0.5k	4.6k	4.1k	5.3k	5.1k	2.5k	4.8k	9.9k	4.4M	2.2M	40M
Enduro	1.12k	0.38k	0.32k	1.59k	0.91k	0.69k	0.19k	2.49 k	0.31k	0.82M	0.8M	30M
Pong	21	18.82	21	20.9	21	20.8	17	20	9.3	1.2M	2.4M	5M

52

Posterior Distribution for Deep Neural Networks

BBQ-Networks [Lipton et al., 2018]

- Uses variational inference to quantify uncertainty
- Uses independent factorized Gaussians as an approximate posterior

MNF-DQN [Touati et al., 2019]

- Leverages recent advances in variational Bayesian NN
- Computationally and statistically efficient
- Uses normalizing multiplicative flows (MNF) in order to account for the uncertainty of estimates for efficient exploration

- Define multiple value functions Q_k
- Update functions with different datasets
- Share part of the architecture

another way of approximating a sample from posterior

Bootstrap DQN

[Osband et al., 2016a]

Algorithm 1 Bootstrapped DQN

- 1: Input: Value function networks Q with K outputs $\{Q_k\}_{k=1}^K$. Masking distribution M.
- 2: Let B be a replay buffer storing experience for training.
- 3: for each episode \mathbf{do}
- 4: Obtain initial state from environment s_0
- 5: Pick a value function to act using $k \sim \text{Uniform}\{1, \dots, K\}$
- 6: for step $t = 1, \ldots$ until end of episode do
- 7: Pick an action according to $a_t \in \arg \max_a Q_k(s_t, a)$
- 8: Receive state s_{t+1} and reward r_t from environment, having taking action a_t
- 9: Sample bootstrap mask $m_t \sim M$
- 10: Add $(s_t, a_t, r_{t+1}, s_{t+1}, m_t)$ to replay buffer B
- 11: end for 12: end for
- M_t determines the type of bootstrapping strategy

$$g_t^k = m_t^k \left(y_t^Q - Q_k(s_t, a_t; \theta) \right) \nabla_\theta Q_k(s_t, a_t; \theta)$$

with target
$$y_t = r_t + \max_a Q(s_{t+1}, a; \theta^-)$$

• \geq 2000 episodes • < 2000 episodes

Masking rule for samples in episode k: $m_k \sim Ber(p)$

facebook Artificial Intelligence Research

• \geq 2000 episodes • < 2000 episodes

- Ensemble DQN: ensemble policy?
- Thompson DQN: resample at each step

58

Noisy Networks [Fortunato et al., 2018]

- Normal NN layer y = wx + b
- Double the parameters with mean and variance $w \to \mu^w, \sigma^w$ and $b \to \mu^b, \sigma^b$
- \blacksquare Whenever a layer is evaluated draw $\varepsilon^w, \varepsilon^b \sim \mathcal{D}$
- Evaluate the "random" layer as $y = (\mu^w + \sigma^w \odot \varepsilon^w) + \mu^b + \sigma^b \odot \varepsilon^b$
- Let $\zeta = (\mu^w, \sigma^w, \mu^b, \sigma^b),$ define the expected loss

$$\overline{L}(\zeta) = \mathbb{E}_{\varepsilon} \big[L(\zeta, \varepsilon) \big]$$

Gradient estimation

$$\nabla_{\zeta} \overline{L}(\zeta) = \mathbb{E}_{\varepsilon} \big[\nabla_{\zeta} L(\zeta, \varepsilon) \big] \approx \frac{1}{n} \sum_{i=1}^{n} \nabla_{\zeta} L(\zeta, \varepsilon_i)$$

Noisy Networks [Fortunato et al., 2018]

Noise models

- Independent noise $\varepsilon_{i,j}$ for each weight i at layer j
- Factorized noise $\varepsilon_{i,j} = f(\varepsilon_i)f(\varepsilon_j)$ (e.g., $f(x) = \operatorname{sgn}(x)\sqrt{x}$)

Independent noise for target and online networks

$$y_t = r_t + \max_{a'} Q(s'_t, a'; \varepsilon', \zeta^-); \qquad L_t(\zeta, \varepsilon) = (y_t - Q(s_t, a_t; \varepsilon, \zeta))^2$$

Noisy Networks [Fortunato et al., 2018]

(c) Improvement in percentage of NoisyNet-A3C over A3C (Mnih et al., 2016)

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta

61

Simple Chain domain

Figure 1: Median number of episodes (max 2000) required to solve the n-chain problem for (figure from left to right) MNF-DQN, BBQN, NoisyDQN and ϵ -greedy DQN. The median is obtained over 10 runs with different seeds. We see that MNF-DQN consistently performs best across different chain lengths.

Comparison: Atari [Touati et al., 2019]

facebook Artificial Intelligence Research

Comparison: Atari [Touati et al., 2019]

facebook Artificial Intelligence Research

Remarks

- Exploration needs to account for uncertainty in the predictions
- Should account for long-term effect

Exploration at the level of (value/policy/model) parameters

Randomized explorations performs often better than optimism
- Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration through bayesian deep q-networks. In *ITA*, pages 1–9. IEEE, 2018.
- Marc G. Bellemare, Joel Veness, and Erik Talvitie. Skip context tree switching. In *ICML*, volume 32 of *JMLR Workshop and Conference Proceedings*, pages 1458–1466. JMLR.org, 2014.
- Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. Unifying count-based exploration and intrinsic motivation. In *NIPS*, pages 1471–1479, 2016.
- Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network distillation. In *ICLR (Poster)*. OpenReview.net, 2019.
- Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic actor critic. In *NeurIPS*, pages 1785–1796, 2019.
- Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore: a new approach for hard-exploration problems. *CoRR*, abs/1901.10995, 2019.
- Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy networks for exploration. In *ICLR (Poster)*. OpenReview.net, 2018.
- Lior Fox, Leshem Choshen, and Yonatan Loewenstein. DORA the explorer: Directed outreaching reinforcement action-selection. In *ICLR (Poster)*. OpenReview.net, 2018.
- Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *ICML*, volume 80 of *Proceedings of Machine Learning Research*, pages 1582–1591. PMLR, 2018.
- Shiau Hong Lim and Peter Auer. Autonomous exploration for navigating in mdps. In *COLT*, volume 23 of *JMLR Proceedings*, pages 40.1–40.24. JMLR.org, 2012.
- Zachary C. Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and Li Deng. Bbq-networks: Efficient exploration in deep reinforcement learning for task-oriented dialogue systems. In *AAAI*, pages 5237–5244. AAAI Press, 2018.

- Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-based exploration with the successor representation. *CoRR*, abs/1807.11622, 2018.
- Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped DQN. In *NIPS*, pages 4026–4034, 2016a.
- Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pages 2377–2386. JMLR.org, 2016b.
- Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning. In *NeurIPS*, pages 8626–8638, 2018.
- Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized value functions. Journal of Machine Learning Research, 20(124):1-62, 2019. URL http://jmlr.org/papers/v20/18-339.html.
- Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration with neural density models. In *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pages 2721–2730. PMLR, 2017.
- Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pages 2778–2787. PMLR, 2017.
- Yifan Sun, Yaqi Duan, Hao Gong, and Mengdi Wang. Learning low-dimensional state embeddings and metastable clusters from time series data. In *NeurIPS*, pages 4563–4572, 2019.
- Adrien Ali Taïga, William Fedus, Marlos C. Machado, Aaron C. Courville, and Marc G. Bellemare. Benchmarking bonus-based exploration methods on the arcade learning environment. *CoRR*, abs/1908.02388, 2019.
- Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning. In *NIPS*, pages 2753–2762, 2017.

Ahmed Touati, Harsh Satija, Joshua Romoff, Joelle Pineau, and Pascal Vincent. Randomized value functions via multiplicative normalizing flows. In *UAI*, page 156. AUAI Press, 2019.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pages 1747–1756. JMLR.org, 2016.