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Outline
2

1 Optimistic Exploration in Deep RL

2 Random Exploration in Deep RL

Website
https://rlgammazero.github.io
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Exploration in DeepRL
3

these are easy

this is hard, almost impossible
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Why?
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Random exploration sometimes work!
PONG GIF Montezuma with random actions!

Link
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https://www.dropbox.com/s/z31z40gnlw27xwf/MontezumaRevenge_random.mp4?dl=1


Montezuma’s Revenge: Level 1
5
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The Four Ingredients Recipe
6

1 Build accurate estimators
2 Evaluate the uncertainty of the prediction
3 Define a mechanism to combine estimation and uncertainty
4 Execute the best policy
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The Four Ingredients Recipe
7

Optimism in face of uncertainty
1 Build accurate estimators

M̂k ⇒ V π
M̂k

2 Evaluate the uncertainty of the estimators

Br
hk(s, a) :=

[
r̂hk(s, a)− βrhk(s, a), r̂hk(s, a) + βrhk(s, a)

]
Bp
hk(s, a) :=

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂hk(·|s, a)‖1 ≤ βphk(s, a)

}
3 Define a mechanism to combine estimation and uncertainty

πk = arg max
π

max
M∈Mk

V π
M
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The Four Ingredients Recipe
8

Posterior Sampling
1 Build accurate estimators
2 Evaluate the uncertainty of the estimators

∀Θ, P(M? ∈ Θ|Ht, µ1) = µt(Θ) µt updated using Bayes’ rule

3 Define a mechanism to combine estimation and uncertainty

πk = arg max
π

V π
M̃k
, M̃k ∼ µk
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“Practical” Limitations
9

Optimism in face of uncertainty
Confidence intervals

βrt (s, a) ∝

√
log(Nt(s, a)/δ)

Nt(s, a)
βpt (s, a) ∝

√
S log(Nt(s, a)/δ)

Nt(s, a)

Solving
πt = arg max

π
max
M∈Mt

V π
M

Posterior sampling
Posterior (dynamics for any state-action pair)

Dirichlet
(
Nt(s

′
1|s, a), Nt(s

′
2|s, a), . . . , Nt(s

′
S |s, a)

)
Update/sample from a unstructured/non-conjugate posteriors
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History: Exploration in DeepRL
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Outline
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1 Optimistic Exploration in Deep RL

2 Random Exploration in Deep RL
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Count-based Exploration
General Scheme

12

1 Estimate a “proxy” for the number of visits Ñ(st)

2 Add an exploration bonus to the rewards

r̃+
t = rt + c

√
1

Ñ(st)

3 Run any DeepRL algorithm on Dt =
{

(si, ai, r̃
+
i , si+1)

}
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Does it work?
13

* figures from [Bellemare et al., 2016]
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What to Count?
14

We never see the same state twice (or it is very unlikely)!
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How difficult is to learn a state representation?
[Sun et al., 2019]

15
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How difficult is to learn a state representation?
[Sun et al., 2019]
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Count-based Exploration
[Tang et al., 2017]

16

Use locality-sensitive hashing to discretize the input
• Encode the state into a k-dim vector by random project

small k = more hash collisions
• Use the sign to discretize

small φ(s) ∈ {−1, 1}k

Count on discrete hashed-states

, Difficult to define a good hashing function

Ghavamzadeh, Lazaric and Pirotta
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Count-based Exploration
[Tang et al., 2017]
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Improve counts by learning a compression

Entropy loss for the auto-encoder
“Binarization” loss for the “projection”
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Count-based Exploration
[Tang et al., 2017]
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Use all past history to update the AE
AE should not be updated too often
we need stable codes!
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Count-based Exploration
[Tang et al., 2017]
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Count-based Exploration
[Bellemare et al., 2016, Ostrovski et al., 2017]

20

Density estimation over a countable set X

ρn(x) = ρ(x|x1, . . . , xn) ≈ P
[
Xn+1 = x|x1, . . . , xn

]
Recording probability

ρ′n(x) = ρ(x|x1, . . . , xn, x) ≈ P
[
Xn+2 = x|x1, . . . , xn, Xn+1 = x

]
Pseudo “local” and “total” counts Ñn(x) and Ñn(x) s.t.

Ñn(x)

ñ
= ρn(x);

Ñn(x) + 1

ñ+ 1
= ρ′n(x) ⇒ Ñn(x) =

ρn(x)(1− ρ′n(x))

ρ′n(x)− ρn(x)
= ñρn(x)

- Any density estimation algorithm (accurate for images)
e.g., CTS [Bellemare et al., 2014] or PixelCNN [van den Oord et al., 2016]

, Density estimation in continuous spaces is hard

probability of x after
observing a new occur-
rency of x

Ghavamzadeh, Lazaric and Pirotta



Count-based Exploration
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Count-based Exploration
[Bellemare et al., 2016, Ostrovski et al., 2017]
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Count-based Exploration
Bellemare et al. [2016], Ostrovski et al. [2017]
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Montezuma!

Ghavamzadeh, Lazaric and Pirotta

https://youtu.be/0yI2wJ6F8r0


Prediction-based Exploration
Burda et al. [2019]

23

What we need is to know how accurate are our predictions.

uncertainty about the model parameters

proxy: prediction error

Sources of prediction errors
1 Amount of data -

2 Stochasticity (e.g., noisy-TV) ,
3 Model misspecification ,

4 Learning dynamics ,

Ghavamzadeh, Lazaric and Pirotta



Prediction-based Exploration
[Burda et al., 2019]

24

Randomly initialize two instances of the same NN (target θ∗ and prediction θ0)

fθ∗ : S → R; fθ : S → R

Train the prediction network minimizing loss w.r.t. the target network

θn = arg min
θ

n∑
t=1

(
fθ(st)− fθ∗(st)

)2

Build “intrinsic” reward
rIt =

∣∣∣fθ(st)− fθ∗(st)∣∣∣
- No influence from stochastic transitions
- No model misspecification (fθ can exactly predict fθ∗)
- Influence of learning dynamics can be reduced

Ghavamzadeh, Lazaric and Pirotta



Prediction-based Exploration
Burda et al. [2019]
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Prediction-based Exploration
[Burda et al., 2019]
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General architecture
Separate extrinsic rEt and intrinsic reward rIt
PPO with two heads to estimate V I and V E

Greedy policy w.r.t. V I + cV E

“Tricks”
Rewards should be in the same range
Use different discount factors for intrinsic and extrinsic rewards

Ghavamzadeh, Lazaric and Pirotta



Prediction-based Exploration
Burda et al. [2019]
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Prediction-based Exploration
[Burda et al., 2019]
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Montezuma!

finds 22 out of the 24 rooms on the first level

Ghavamzadeh, Lazaric and Pirotta

https://www.youtube.com/watch?v=40VZeFppDEM


Comparison
[Taïga et al., 2019]
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Comparison: not all problems require same amount of exploration
[Taïga et al., 2019]
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Go-Explore
[Ecoffet et al., 2019]

31

Issue of intrinsic motivated algorithms: detachment problem

Forget about promising areas they have visited

They do not return to them for further exploration

Green areas indicate
intrinsic reward, white
indicates areas where
no intrinsic reward re-
mains, and purple areas
indicate where the al-
gorithm is currently
exploring.

*mainly due to model-free nature
Ghavamzadeh, Lazaric and Pirotta



Go-Explore: Structure
[Ecoffet et al., 2019]

32

1 Exploration
• Select a promising state
• Go to a state
• Explore locally (e.g., randomly)
• Store observations
• Repeat

2 Robustification
• Against noise
• Imitation learning on best

trajectories

- Builds an archive of observed states in latent space

- Archive is sorted by relevance (e.g., IM, novelty)

- Knows a policy to reach an observed state (e.g., by replaying)

* similar in spirit to [Lim and Auer, 2012]

Ghavamzadeh, Lazaric and Pirotta
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Go-Explore on Montezuma
[Ecoffet et al., 2019]
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Go-Explore on Montezuma
[Ecoffet et al., 2019]
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Using domain knowledge for the state representation, Phase 1 of Go-Explore finds a 238 rooms, solves over 9

levels on average

Image Credit: Wikimedia Foundation
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Go-Explore on Pitfall
[Ecoffet et al., 2019]
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Pitfall!

Ghavamzadeh, Lazaric and Pirotta

https://www.youtube.com/watch?v=mERr8xkPOAE&feature=emb_title


Optimistic Actor-Critic
[Ciosek et al., 2019]

36

Actor: decides which action to take
=⇒ π

Critic: estimates the goodness of an
action in a state
=⇒ Q

Policy performance: Jπ = Eπ

[∑
t

γtrt

]
Policy gradient:

∇Jπ = Es∼dπ
[∑

a

∇π(s, a)Qπ(s, a)

]

Ghavamzadeh, Lazaric and Pirotta



Optimistic Actor-Critic
[Ciosek et al., 2019]
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* image from [Fujimoto et al., 2018]

To limit overestimation (i.e., positive bias)

use of two identical Q-functions

train them independent

QLB = min{Q1, Q2}

, Issues with LB and greedy

Ghavamzadeh, Lazaric and Pirotta



Optimistic Actor-Critic
[Ciosek et al., 2019]
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Build an upper-bound to the true Q-value (optimistic Q-value)
Q̂(s, a) = µQ(s, a) + βσQ(s, a)

with

µQ(s, a) =
1

2

(
Q1(s, a) +Q2(s, a)

)
, σQ(s, a) =

√ ∑
i∈{1,2}

1

2
(Qi(s, a)− µQ(s, a))2

Exploration policy by soft-update (for stability): πE = N (µE ,ΣE)

(µE , σE) = arg max
µ,Σ

Ea∼N (µ,Σ)

[
Q̂(s, a)

]
s.t. KL (N (µ,Σ),N (µT ,ΣT )) ≤ δ

* for computational efficiency, they fit a linear model on Q̂

Ghavamzadeh, Lazaric and Pirotta



Optimistic Actor-Critic
[Ciosek et al., 2019]
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Optimistic Actor-Critic: Experiments
[Ciosek et al., 2019]
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Outline
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1 Optimistic Exploration in Deep RL

2 Random Exploration in Deep RL
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Randomized Exploration
General Scheme

42

1 Estimate the parameters θ for either policy or value function
2 Add randomness to the parameters θ̃ = θ + noise
3 Run the corresponding (greedy) policy

Remark: changing weights induces a consistent, and potentially very complex,
state-dependent change in policy over multiple time steps
=⇒ long-term exploration
=⇒ no dithering

o The randomness needs to represent “uncertainty”

Ghavamzadeh, Lazaric and Pirotta
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Least-Squares Value Iteration
43

Estimate Q? from samples

Input: Dataset Dk = (shi, ahi, rhi)
H,k
h=1,i=1

Set Q̂H+1(s, a) = 0
for h = H, . . . , 1 do // backward induction

Compute

yhi = rhi + max
a∈A

Q̂h+1,k(sh+1,i, a) = rhi + V̂h+1,k(sh+1,i) , i = 1, . . . , k

Build regression dataset Dreg
h = {φh(shi, ahi), yhi}i

Compute

θ̂hk = arg min
θ

{
L(θ,Dreg) :=

1

k

k∑
i=1

(yhi −Qhk(shi, ahi|θ))2
}

end
return {θ̂hk}Hh=1

Optimize L by gradient descent

Ghavamzadeh, Lazaric and Pirotta



Randomization on LSVI
44

How to force exploration
Perturbe observed rewards
Perturbe parameters (e.g., based on posterior uncertainty)

Randomized Value Function (RVF) [Osband et al., 2019, 2018, Azizzadenesheli et al., 2018,
Lipton et al., 2018, Touati et al., 2019, Osband et al., 2019]

Ghavamzadeh, Lazaric and Pirotta



RVF: Reward Perturbation
[Osband et al., 2018, 2019]

45

Input: Dataset Dk = (shi, ahi, rhi)
H,k
h=1,i=1

Set Q̂H+1(s, a) = 0
for h = H, . . . , 1 do // backward induction

Perturb rewards
r̃hi = rhi + ωhi, ωhi ∼ N (0, σ2)

Compute

ỹhi = r̃hi + max
a∈A

Q̂h+1,k(sh+1,i, a) = r̃hi + V̂h+1,k(sh+1,i), i = 1, . . . , k

Build regression dataset D̃reg
h = {(shi, ahi), ỹhi}i

Sample θp from prior
Compute

θ̂hk = arg min
θ

{
LB(θ, θp, D̃reg) :=

1

k

k∑
i=1

(ỹhi −Qhk(shi, ahi|θ))2 +R(θ, θp)

}
end
return {θ̂hk}Hh=1

Ghavamzadeh, Lazaric and Pirotta



RVF: Perturb Parameters
[Osband et al., 2016b]
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Input: Dataset Dk = (shi, ahi, rhi)
H,k
h=1,i=1

Set QH+1(s, a) = 0
for h = H, . . . , 1 do // backward induction

Compute

yhi = rhi + max
a∈A

Qh+1,k(sh+1,i, a) = rhi + V h+1,k(sh+1,i) , i = 1, . . . , k

Build regression dataset Dreg
h = {φh(shi, ahi), yhi}i

Sample θp from prior
Compute

θ̂hk = arg min
θ

{
LB(θ, θp,Dreg

) :=
1

k

k∑
i=1

(yhi −Qhk(shi, ahi|θ))2 +R(θ, θp)

}

Sample ξhk ∼ N
(
0,Σ−1

hk

)
Set θhk = θ̂hk + ξhk

end
return {θhk}Hh=1

θ̂ = E[θ|Dreg, prior], Σ−1 = Cov[θ|Dreg, prior]

Bootstrapping randomized
estimates
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RLSVI as Regression on Perturbed Data
[Osband et al., 2018, 2019]

47

Bayesian Linear Regression (posterior structure)

True parameter is θ? ∈ Rd ⇒ we want to estimate it
Assume Gaussian prior N (θ, λI)

Dataset D = (xi, yi)
N
i=1, where

yi = xTi θ
? + εi , εi ∼ N (0, σ2)

Solve min
θ
LB(θ, θ,D)

Conditional posterior µp

θ?|D ∼ µp =N
( θ̂︷ ︸︸ ︷

Σ−1

(
1

σ2
XTy +

1

λ
θ

)
, Σ−1

)
Σ =

1

σ2
XTX +

1

λ
I

Ghavamzadeh, Lazaric and Pirotta



RLSVI as Regression on Perturbed Data
[Osband et al., 2018, 2019]

48

Target perturbation
Compute

θ̂ = arg min
θ

1

σ2

N∑
i=1

(
yi + ωi − xTi θ

)2
+

1

λ
‖ θ̃ − θ‖22

Perturbation
ωi ∼ N (0, σ2)

Sample from prior
θ̃ ∼ N (θ, λI)

⇒ θ̂ ∼ µp

- Computational generation of posterior samples for linear Bayesian regression
i.e., we can sample µp by fitting a least-squares estimate

For linear models,
poster sampling = regularized least-squares on perturbed data

� For tabular MDPs, xi = es,a and θ = Q

backward induction on randomized rewards = RLSVI (see Part 2)

Ghavamzadeh, Lazaric and Pirotta
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RVF: issues 49

Reward Perturbation
Minimize least-squares problem for any reward structure
e.g., by gradient descent
Not so easy to define the magnitude of the reward perturbation

Posterior Sampling
Posterior variance
• easy for linear model
• hard (almost impossible) for generic models

A lot of approximate schemas for computing the posterior

Ghavamzadeh, Lazaric and Pirotta



Randomized Prior
[Osband et al., 2018]
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Posterior Distribution for Deep Neural Networks
Bayesian DQN [Azizzadenesheli et al., 2018]

51

o Same tools as in linear bandit
1 Bayesian linear regression with given feature φ(s) ∈ Rd

and given target vector for each action ya

µa = (ΦT
aΦa)

−1ΦT
a ya Σa = ΦT

aΦa

2 Draw a weight vector at random wa ∼ N
(
µa,Σ

−1
a

)
3 Run the corresponding (greedy) policy
at = arg max

a
Q(st, a) := arg max

a
wT
a φ(st)

4 Train φ with standard NN to estimate Q

Ghavamzadeh, Lazaric and Pirotta



Posterior Distribution for Deep Neural Networks
Bayesian DQN [Azizzadenesheli et al., 2018]

52
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Posterior Distribution for Deep Neural Networks
53

BBQ-Networks [Lipton et al., 2018]

Uses variational inference to quantify uncertainty
Uses independent factorized Gaussians as an approximate posterior

MNF-DQN [Touati et al., 2019]

Leverages recent advances in variational Bayesian NN
Computationally and statistically efficient
Uses normalizing multiplicative flows (MNF) in order to account for the
uncertainty of estimates for efficient exploration

Ghavamzadeh, Lazaric and Pirotta



Bootstrap DQN
[Osband et al., 2016a]

54

Define multiple value functions Qk
Update functions with different
datasets
Share part of the architecture

another way of approximating a sample from posterior

Ghavamzadeh, Lazaric and Pirotta



Bootstrap DQN
[Osband et al., 2016a]
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Mt determines the type of bootstrapping strategy

gkt = mk
t

(
yQt −Qk(st, at; θ)

)
∇θQk(st, at, ; θ)

with target yt = rt + max
a

Q(st+1, a; θ−)

Ghavamzadeh, Lazaric and Pirotta



Bootstrap DQN
[Osband et al., 2016a]
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Masking rule for samples in episode k: mk ∼ Ber(p)

Ghavamzadeh, Lazaric and Pirotta



Bootstrap DQN
[Osband et al., 2016a]
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Ensemble DQN: ensemble policy?
Thompson DQN: resample at each step

Ghavamzadeh, Lazaric and Pirotta



Bootstrap DQN
[Osband et al., 2016a]
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Noisy Networks
[Fortunato et al., 2018]

59

Normal NN layer y = wx+ b

Double the parameters with mean and variance w → µw, σw

and b→ µb, σb

Whenever a layer is evaluated draw εw, εb ∼ D
Evaluate the “random” layer as
y = (µw + σw � εw) + µb + σb � εb

Let ζ = (µw, σw, µb, σb), define the expected loss

L(ζ) = Eε
[
L(ζ, ε)

]
Gradient estimation

∇ζL(ζ) = Eε
[
∇ζL(ζ, ε)

]
≈ 1

n

n∑
i=1

∇ζL(ζ, εi)
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Noisy Networks
[Fortunato et al., 2018]
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Noise models
Independent noise εi,j for each weight i at layer j
Factorized noise εi,j = f(εi)f(εj) (e.g., f(x) = sgn(x)

√
x)

Independent noise for target and online networks

yt = rt + max
a′

Q(s′t, a
′; ε′, ζ−); Lt(ζ, ε) = (yt −Q(st, at; ε, ζ)

)2

Ghavamzadeh, Lazaric and Pirotta



Noisy Networks
[Fortunato et al., 2018]
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Comparison
[Touati et al., 2019]
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Simple Chain domain
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Comparison: Atari
[Touati et al., 2019]
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Comparison: Atari
[Touati et al., 2019]
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Remarks
65

Exploration needs to account for uncertainty in the predictions
Should account for long-term effect

Exploration at the level of (value/policy/model) parameters

Randomized explorations performs often better than optimism
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