Exploration-Exploitation
 in Reinforcement Learning

Part 2 - Regret Minimization in Tabular MDPs

Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta

Outline

1 Tabular Model-Based

- Optimistic
- Randomized

2 Tabular Model-Free Algorithms

Website
https://rlgammazero.github.io

Minimax Lower Bound

Theorem (adapted from Jaksch et al. [2010])

For any MDP $M^{\star}=\left\langle\mathcal{S}, \mathcal{A}, p_{h}, r_{h}, H\right\rangle$ with stationary ($p_{1}=p_{2}=\ldots=p_{H}$) transitions, any algorithm \mathfrak{A} at any episode K suffers a regret of at least

$$
\Omega(\sqrt{H S A T})
$$

with $T=H K$.

- If non-stationary transitions
- p_{1}, \ldots, p_{H} can be arbitrary different
- Effective number of states is $S^{\prime}=H S$
- Lower bound

$$
\Omega(H \sqrt{S A T})
$$

Tabular MDPs: Outline

1 Tabular Model-Based

- Optimistic
- Randomized

2 Tabular Model-Free Algorithms

The Optimism Principle: Intuition

OPTIMISM
It's the best way to see life.

The Optimism Principle: Intuition

Exploration vs. Exploitation

The Optimism Principle: Intuition

Exploration vs. Exploitation

Optimism in Face of Uncertainty
When you are uncertain, consider the best possible world (reward-wise)

The Optimism Principle: Intuition

Exploration vs. Exploitation

Optimism in Face of Uncertainty
When you are uncertain, consider the best possible world (reward-wise)

If the best possible world is correct
\Longrightarrow no regret
Exploitation

If the best possible world is wrong
\Longrightarrow learn useful information
Exploration

The Optimism Principle: Intuition

Exploration vs. Exploitation

If the best possible world is correct
\Longrightarrow no regret
Exploitation

If the best possible world is wrong
\Longrightarrow learn useful information
Exploration

History: OFU for Regret Minimization
Tabular MDPs
FH: finite-horizon
AR: average reward

Learning Problem

```
Input: S, A %h, ph
```



```
for k=1,\ldots,K do // episodes
    Observe initial state slk (arbitrary)
    Compute ( }\mp@subsup{Q}{h,k}{}\mp@subsup{)}{h=1}{H}\mathrm{ from }\mp@subsup{\mathcal{D}}{k}{
    Define }\mp@subsup{\pi}{k}{}\mathrm{ based on (Qhk )}\mp@subsup{h}{h=1}{H
    for }h=1,\ldots,H\mathrm{ do
        Execute }\mp@subsup{a}{hk}{}=\mp@subsup{\pi}{hk}{}(\mp@subsup{s}{hk}{}
        Observe r rhk and sh+1,k
    end
    Add trajectory ( }\mp@subsup{s}{hk}{},\mp@subsup{a}{hk}{},\mp@subsup{r}{hk}{}\mp@subsup{)}{h=1}{H}\mathrm{ to }\mp@subsup{\mathcal{D}}{k+1}{
end
```


Learning Problem

```
Input: S, \mathcal{ wn,pm}
Initialize }\mp@subsup{Q}{h1}{}(s,a)=0\mathrm{ for all (s,a) &S S 人 A and h=1, ..,H, 疎=Ø
for k=1,\ldots,K do // episodes
    Observe initial state sik (arbitrary)
    Compute ( }\mp@subsup{Q}{h,k}{}\mp@subsup{)}{h=1}{H}\mathrm{ from }\mp@subsup{\mathcal{D}}{k}{
    Define }\mp@subsup{\pi}{k}{}\mathrm{ based on (Q (Qk) H=1
    Defines the type of algorithm
    for }h=1,\ldots,H\mathrm{ do
        Execute ahk = \mp@subsup{\pi}{hk}{}(\mp@subsup{s}{hk}{})
        Observe }\mp@subsup{r}{hk}{}\mathrm{ and }\mp@subsup{s}{h+1,k}{
    end
    Add trajectory ( }\mp@subsup{s}{hk}{},\mp@subsup{a}{hk}{},\mp@subsup{r}{hk}{}\mp@subsup{)}{h=1}{H}\mathrm{ to }\mp@subsup{\mathcal{D}}{k+1}{
end
```


Model-based Learning

```
Input: \(\mathcal{S}, \mathcal{A} \sqrt{n, p n}\)
Initialize \(Q_{h 1}(s, a)=0\) for all \((s, a) \in \mathcal{S} \times \mathcal{A}\) and \(h=1, \ldots, H, \mathcal{D}_{1}=\emptyset\)
for \(k=1, \ldots, K\) do // episodes
    Observe initial state \(s_{1 k}\) (arbitrary)
    Estimate empirical MDP \(\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{h k}, \widehat{r}_{h k}, H\right)\) from \(\mathcal{D}_{k}\)
    \(\widehat{p}_{h k}\left(s^{\prime} \mid s, a\right)=\frac{\sum_{i=1}^{k-1} \mathbb{1}\left(\left(s_{h i}, a_{h i}, s_{h+1, i}\right)=\left(s, a, s^{\prime}\right)\right)}{N_{h k}(s, a)}, \quad \widehat{r}_{h k}(s, a)=\frac{\sum_{i=1}^{k-1} r_{h i} \cdot \mathbb{1}\left(\left(s_{h i}, a_{h i}\right)=(s, a)\right)}{N_{h k}(s, a)}\)
    Planning (by backward induction) for \(\pi_{h k}\)
    for \(h=1, \ldots, H\) do
        Execute \(a_{h k}=\pi_{h k}\left(s_{h k}\right)\)
        Observe \(r_{h k}\) and \(s_{h+1, k}\)
    end
    Add trajectory \(\left(s_{h k}, a_{h k}, r_{h k}\right)_{h=1}^{H}\) to \(\mathcal{D}_{k+1}\)
end
```


Measuring Uncertainty

Bounded parameter MDP [Strehl and Littman, 2008]

$$
\begin{aligned}
\mathcal{M}_{k}=\left\{\left\langle\mathcal{S}, \mathcal{A}, r_{h}, p_{h}, H\right\rangle:\right. & \forall h \in[H] \\
& \left.r_{h}(s, a) \in B_{h k}^{r}(s, a), p_{h}(\cdot \mid s, a) \in B_{h k}^{p}(s, a), \forall(s, a) \in \mathcal{S} \times \mathcal{A}\right\}
\end{aligned}
$$

Compact confidence sets

$$
\begin{aligned}
B_{h k}^{r}(s, a) & :=\left[\widehat{r}_{h k}(s, a)-\beta_{h k}^{r}(s, a), \widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)\right] \\
B_{h k}^{p}(s, a) & :=\left\{p(\cdot \mid s, a) \in \Delta(\mathcal{S}):\left\|p(\cdot \mid s, a)-\widehat{p}_{h k}(\cdot \mid s, a)\right\|_{1} \leq \beta_{h k}^{p}(s, a)\right\}
\end{aligned}
$$

Measuring Uncertainty

Bounded parameter MDP [Strehl and Littman, 2008]

$$
\begin{aligned}
\mathcal{M}_{k}=\left\{\left\langle\mathcal{S}, \mathcal{A}, r_{h}, p_{h}, H\right\rangle:\right. & \forall h \in[H] \\
& \left.r_{h}(s, a) \in B_{h k}^{r}(s, a), p_{h}(\cdot \mid s, a) \in B_{h k}^{p}(s, a), \forall(s, a) \in \mathcal{S} \times \mathcal{A}\right\}
\end{aligned}
$$

Compact confidence sets

$$
\begin{aligned}
& B_{h k}^{r}(s, a):=\left[\widehat{r}_{h k}(s, a)-\beta_{h k}^{r}(s, a), \widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)\right] \\
& B_{h k}^{p}(s, a):=\left\{p(\cdot \mid s, a) \in \Delta(\mathcal{S}):\left\|p(\cdot \mid s, a)-\widehat{p}_{h k}(\cdot \mid s, a)\right\|_{1} \leq \beta_{h k}^{p}(s, a)\right\}
\end{aligned}
$$

Confidence bounds based on [Hoeffding, 1963] and [Weissman et al., 2003]

$$
\beta_{h k}^{r}(s, a) \propto \sqrt{\frac{\log \left(N_{h k}(s, a) / \delta\right)}{N_{h k}(s, a)}}, \quad \beta_{h k}^{p}(s, a) \propto \sqrt{\frac{S \log \left(N_{h k}(s, a) / \delta\right)}{N_{h k}(s, a)}}
$$

Bounded Parameter MDP: Optimism

Fix a policy π

Bounded Parameter MDP: Optimism

Fix a policy π

Bounded Parameter MDP: Optimism

Fix a policy π

Bounded Parameter MDP: Optimism

Fix a policy π

Extended Value Iteration

[Jaksch et al., 2010]

```
Input: \(\mathcal{S}, \mathcal{A}, B_{h k}^{r}, B_{h k}^{p}\)
Set \(Q_{H+1}(s, a)=0\) for all \((s, a) \in \mathcal{S} \times \mathcal{A}\)
for \(h=H, \ldots, 1\) do
    for \((s, a) \in \mathcal{S} \times \mathcal{A}\) do
        Compute
                                    \(\begin{aligned} Q_{h k}(s, a) & =\max _{r_{h} \in B_{h k}^{r}(s, a)} r_{h}(s, a)+\max _{p_{h} \in B_{h k}^{p}(s, a)} \mathbb{E}_{s^{\prime} \sim p_{h}(\cdot \mid s, a)}\left[V_{h+1, k}\left(s^{\prime}\right)\right] \\ & =\widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+\max _{p_{h} \in B_{h k}^{p}(s, a)} \mathbb{E}_{s^{\prime} \sim p_{h}(\cdot \mid s, a)}\left[V_{h+1, k}\left(s^{\prime}\right)\right]\end{aligned}\)
                                    \(V_{h k}(s)=\min \left\{H-(h-1), \max _{a \in \mathcal{A}} Q_{h k}(s, a)\right\}\)
    end
end
return \(\pi_{h k}(s)=\arg \max _{a \in \mathcal{A}} Q_{h k}(s, a)\)
```


Extended Value Iteration

[Jaksch et al., 2010]

```
Input: \(\mathcal{S}, \mathcal{A}, B_{h k}^{r}, B_{h k}^{p}\)
Set \(Q_{H+1}(s, a)=0\) for all \((s, a) \in \mathcal{S} \times \mathcal{A}\)
for \(h=H, \ldots, 1\) do
    for \((s, a) \in \mathcal{S} \times \mathcal{A}\) do
        Compute
                                    \(\begin{aligned} Q_{h k}(s, a) & =\max _{r_{h} \in B_{h k}^{r}(s, a)} r_{h}(s, a)+\max _{p_{h} \in B_{h k}^{p}(s, a)} \mathbb{E}_{s^{\prime} \sim p_{h}(\cdot \mid s, a)}\left[V_{h+1, k}\left(s^{\prime}\right)\right] \\ & =\widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+\max _{p_{h} \in B_{h k}^{p}(s, a)} \mathbb{E}_{s^{\prime} \sim p_{h}(\cdot \mid s, a)}\left[V_{h+1, k}\left(s^{\prime}\right)\right]\end{aligned}\)
                                \(V_{h k}(s)=\min \left\{H-(h-1), \max _{a \in \mathcal{A}} Q_{h k}(s, a)\right\}\)
    end
end
return \(\pi_{h k}(s)=\arg \max _{a \in \mathcal{A}} Q_{h k}(s, a)\)
```


Optimism

UCRL2-CH for Finite Horizon

Theorem (adapted from [Jaksch et al., 2010])

For any tabular MDP with stationary transitions, UCRL2 with Chernoff-Hoeffding confidence intervals (UCRL2-CH), with high-probability, suffers a regret

$$
R\left(K, M^{\star}, \mathrm{UCRL} 2-\mathrm{CH}\right)=\widetilde{\mathcal{O}}\left(H S \sqrt{A T}+H^{2} S A\right)
$$

- Order optimal $\sqrt{A T}$
- $\sqrt{H S}$ factor worse than the lower-bound

Lower-bound: $\quad \Omega(\sqrt{H S A T})$

Extended Value Iteration

$$
\begin{aligned}
Q_{h k}(s, a) & =\max _{(r, p) \in B_{h k}^{r}(s, a) \times B_{h k}^{p}(s, a)}\left\{r+p^{\top} V_{h+1, k}\right\} \\
& =\max _{r \in B_{h k}^{r}(s, a)} r+\max _{p \in B_{h k}^{p}(s, a)} p^{\top} V_{h+1, k} \\
& =\widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+\max _{p \in B_{h k}^{p}(s, a)} p^{\top} V_{h+1, k} \\
& \leq \widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+\left\|p-\widehat{p}_{h k}(\cdot \mid s, a)\right\|_{1}\left\|V_{h+1, k}\right\|_{\infty}+\widehat{p}_{h k}(\cdot \mid s, a)^{\top} V_{h+1, k} \\
& \leq \widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+H \beta_{h k}^{p}(s, a)+\widehat{p}_{h k}(\cdot \mid s, a)^{\top} V_{h+1, k}
\end{aligned}
$$

Extended Value Iteration

$$
\begin{aligned}
Q_{h k}(s, a) & =\max _{(r, p) \in B_{h k}^{r}(s, a) \times B_{h k}^{p}(s, a)}\left\{r+p^{\top} V_{h+1, k}\right\} \\
& =\max _{r \in B_{h k}^{r}(s, a)} r+\max _{p \in B_{h k}^{p}(s, a)} p^{\top} V_{h+1, k} \\
& =\widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+\max _{p \in B_{h k}^{p}(s, a)} p^{\top} V_{h+1, k} \\
& \leq \widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+\left\|p-\widehat{p}_{h k}(\cdot \mid s, a)\right\|_{1}\left\|V_{h+1, k}\right\|_{\infty}+\widehat{p}_{h k}(\cdot \mid s, a)^{\top} V_{h+1, k} \\
& \leq \widehat{r}_{h k}(s, a)+\beta_{h k}^{r}(s, a)+H \beta_{h k}^{p}(s, a)+\widehat{p}_{h k}(\cdot \mid s, a)^{\top} V_{h+1, k}
\end{aligned}
$$

3 Exploration bonus $(1+H \sqrt{S}) \beta_{h k}^{r}(s, a)$ for the reward

Replace EVI with Exploration Bonus

```
Input: \(\mathcal{S}, \mathcal{A}, D_{h k}^{r}, D_{h k}^{p}, \widehat{r}_{h k}, \widehat{p}_{h k}, b_{h k}\)
Set \(Q_{H+1, k}(s, a)=0\) for all \((s, a) \in \mathcal{S} \times \mathcal{A}\)
for \(h=H, \ldots, 1\) do
    for \((s, a) \in \mathcal{S} \times \mathcal{A}\) do
        Compute
                                    \(Q_{h k}(s, a)=\widehat{r}_{h k}(s, a)+b_{h k}(s, a)+\mathbb{E}_{s^{\prime} \sim \widehat{p}_{h k}(\cdot \mid s, a)}\left[V_{h+1, k}\left(s^{\prime}\right)\right]\)
    \(V_{h k}(s)=\min \left\{H-(h-1), \max _{a^{\prime} \in \mathcal{A}} Q_{h k}\left(s^{\prime}, a^{\prime}\right)\right\}\)
    end
end
return \(\pi_{h k}(s)=\arg \max _{a \in \mathcal{A}} Q_{h k}(s, a)\)
```

\mathcal{B} Equivalent to value iteration on $\bar{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{r}_{h k}+b_{h k}, \widehat{p}_{h k}, H\right)$

UCBVI: Measuring Uncertainty

- Combine uncertainties in rewards and transitions
- In a smart way

$$
b_{h k}(s, a)=(H+1) \sqrt{\frac{\log \left(N_{h k}(s, a) / \delta\right)}{N_{h k}(s, a)}}<\beta_{h k}^{r}+H \beta_{h k}^{p}
$$

UCBVI: Measuring Uncertainty

- Combine uncertainties in rewards and transitions
- In a smart way

$$
b_{h k}(s, a)=(H+1) \sqrt{\frac{\log \left(N_{h k}(s, a) / \delta\right)}{N_{h k}(s, a)}}<\beta_{h k}^{r}+H \beta_{h k}^{p}
$$

Save a \sqrt{S} factor

$$
|\left(p_{h}(\cdot \mid s, a)-\widehat{p}_{h k}(\cdot \mid s, a)\right)^{\top} \underbrace{V_{h}^{\star}}_{\leq H}| \leq H \underbrace{\sqrt{\frac{\log \left(N_{h k}(s, a) / \delta\right)}{N_{h k}(s, a)}}}_{=\beta_{h k}^{p} / \sqrt{S}}
$$

UCBVI-CH: Regret

Theorem (Thm. 1 of Azar et al. [2017])

For any tabular MDP with stationary transitions, UCBVI with Chernoff-Hoeffding confidence intervals (UCBVI-CH), with high-probability, suffers a regret

$$
R\left(K, M^{\star}, \text { UCBVI-CH }\right)=\widetilde{\mathcal{O}}\left(H \sqrt{S A T}+H^{2} S^{2} A\right)
$$

- Order optimal $\sqrt{S A T}$
- \sqrt{H} factor worse than the lower-bound
- Long "warm up" phase
- If non-stationary, then $\widetilde{\mathcal{O}}\left(H^{3 / 2} \sqrt{S A T}\right)$

Lower-bound: $\quad \Omega(\sqrt{H S A T})$

Refined Confidence Bounds

- UCRL2 with Bernstein-Freedman bounds (instead of Hoeffding/Weissman): * i see tutorial website

$$
R\left(K, M^{\star}, \mathrm{UCRL2B}\right)=\widetilde{\mathcal{O}}\left(\sqrt{H \Gamma S A T}+H^{2} S^{2} A\right)
$$

PStill not matching the lower-bound!

$$
\Gamma=\max _{h, s, a}\left\|p_{h}(\cdot \mid s, a)\right\|_{0} \leq S
$$

Refined Confidence Bounds

- UCRL2 with Bernstein-Freedman bounds (instead of Hoeffding/Weissman): * i see tutorial website

$$
R\left(K, M^{\star}, \mathrm{UCRL2B}\right)=\widetilde{\mathcal{O}}\left(\sqrt{H \Gamma S A T}+H^{2} S^{2} A\right)
$$

o Still not matching the lower-bound!

$$
\Gamma=\max _{h, s, a}\left\|p_{h}(\cdot \mid s, a)\right\|_{0} \leq S
$$

- UCBVI with Bernstein-Freedman bounds: *

$$
R\left(K, M^{\star}, \text { UCBVI-BF }\right)=\widetilde{\mathcal{O}}\left(\sqrt{H S A T}+H^{2} S^{2} A+H \sqrt{T}\right)
$$

B Matching the Lower-Bound!
R Long "warm up" phase

* stationary model $\left(p_{1}=\ldots=p_{H}\right)$

Refined Confidence Bounds

- EULER [Zanette and Brunskill, 2019] keeps upper and lower bounds on V_{h}^{\star}

$$
R\left(K, M^{\star}, \mathrm{EULER}\right)=\mathcal{O}\left(\sqrt{\mathbb{Q}^{\star} S A T}+\sqrt{S} S A H^{2}(\sqrt{S}+\sqrt{H})\right)
$$

P Problem-dependent bound based on environmental norm [Maillard et al., 2014]

$$
\begin{aligned}
\mathbb{Q}^{\star} & =\max _{s, a, h}\left(\mathbb{V}\left(r_{h}(s, a)\right)+\mathbb{V}_{x \sim p_{h}(\cdot \mid s, a)}\left(V_{h+1}^{\star}(x)\right)\right) \\
\mathbb{V}_{x \sim p}(f(x)) & =\mathbb{E}_{x \sim p}\left[\left(f(x)-\mathbb{E}_{y \sim p}[f(y)]\right)^{2}\right]
\end{aligned}
$$

\checkmark Can remove the dependence on H
B Matching lower-bound in the worst case

UCRL2: RiverSwim

Hoeffding

$$
\begin{aligned}
& b_{h k}^{r}(s, a)=r_{\max } \sqrt{\frac{L}{N}} \\
& b_{h k}^{p}(s, a)=\sqrt{\frac{S L}{N}}
\end{aligned}
$$

Bernstein

$b_{h k}^{r}(s, a)=\sqrt{\frac{L \widehat{\mathbb{V}}\left(\widehat{r}_{h k}\right)}{N}}+r_{\max } \frac{L}{N}$
$b_{h k}^{p}(s, a)=\sqrt{\frac{L \widehat{\mathbb{V}}\left(\widehat{p}_{h k}\right)}{N}}+\frac{L}{N}$
$\widehat{\mathbb{V}}\left(\widehat{r}_{h k}\right)=\frac{1}{N} \sum_{i}\left(r_{h, i}-\widehat{r}_{h k}\right)^{2}$
is the population variance

$$
\begin{aligned}
& N=N_{h k}(s, a) \vee 1 \\
& L=\log (S A N / \delta) \\
& \text { facebook Artificial Intelligence Research }
\end{aligned}
$$

UCBVI: RiverSwim

Hoeffding

$$
b_{h k}(s, a)=\frac{(H-h) L}{\sqrt{N}}
$$

Bernstein

$$
\begin{aligned}
b_{h k}(s, a)= & \sqrt{\frac{L \mathbb{V}_{\widehat{p}_{h k}}\left(V_{h+1, k}\right)}{N}} \\
& +\frac{(H-h) L}{N}+\frac{(H-h)}{\sqrt{N}}
\end{aligned}
$$

$$
\mathbb{V}_{p}(V)=\mathbb{E}_{x \sim p}\left[(V(x)-\mu)^{2}\right]
$$

$$
\text { with } \mu=\mathbb{E}_{x \sim p}[V(x)]
$$

$$
\begin{aligned}
& N=N_{h k}(s, a) \vee 1 \\
& L=\log (S A N / \delta)
\end{aligned}
$$

UCBVI: RiverSwim

Hoeffding

$$
b_{h k}(s, a)=\frac{(H-h) L}{\sqrt{N}}
$$

Bernstein

$$
\begin{aligned}
b_{h k}(s, a)= & \sqrt{\frac{L \mathbb{V}_{\widehat{p}_{h k}}\left(V_{h+1, k}\right)}{N}} \\
& +\frac{(H-h) L}{N}+\frac{(H-h)}{\sqrt{N}}
\end{aligned}
$$

$\mathbb{V}_{p}(V)=\mathbb{E}_{x \sim p}\left[(V(x)-\mu)^{2}\right]$
with $\mu=\mathbb{E}_{x \sim p}[V(x)]$

$$
\begin{aligned}
& N=N_{h k}(s, a) \vee 1 \\
& L=\log (S A N / \delta)
\end{aligned}
$$

Model-Based Advantages

Learning efficiency

- First order optimal
- Matching lower-bound

Counterfactual reasoning

- Optimistic/Pessimistic value estimate for any π
- Usefull for inference (e.g., safety)

Model-Based Issues

Complexity

- Space $O\left(H S^{2} A\right)$

$$
\text { non-stationary model } \Longrightarrow H(\underbrace{S^{2} A}_{\text {transitions }}+\underbrace{S A}_{\text {rewards }})
$$

- Time $O(K \underbrace{H S^{2} A}_{\text {planning by } V I})$

Model-Based Issues

Complexity

- Space $O\left(H S^{2} A\right)$

- Time $O(K \underbrace{H S^{2} A}_{\text {planning by } V I})$
incremental updates

```
Input: \(\mathcal{S}, \mathcal{A} r_{h}, p_{h}\)
Initialize \(V_{h 0}(s)=H-(h-1)\) for all \(s \in \mathcal{S}\) and \(h=[H]\)
for \(k=1, \ldots, K\) do // episodes
    Observe initial state \(s_{1 k}\) (arbitrary)
    for \(h=1, \ldots, H\) do
        \(a_{h k} \in \underset{a \in \mathcal{A}}{\arg \max } r_{h}\left(s_{h k}, a\right)+p_{h}\left(\cdot \mid s_{h k}, a\right)^{\top} V_{h+1, k-1}\)
                            \(a \in \mathcal{A}\)
        \(V_{h, k}\left(s_{h k}\right)=r_{h}\left(s_{h k}, a_{h k}\right)+p_{h}\left(\cdot \mid s_{h k}, a_{h k}\right)^{\top} V_{h+1, k-1}\)
        Observe \(s_{h+1, k} \sim p_{h}\left(\cdot \mid s_{h k}, a_{h k}\right)\)
    end
end
```


Opt-RTDP: Incremental Planning

```
Input: S, A 
Initialize }\mp@subsup{V}{h0}{}(s)=H-(h-1) for all s\in\mathcal{S}\mathrm{ and }h=[H],\mp@subsup{\mathcal{D}}{1}{}=
for }k=1,\ldots,K\mathrm{ do // episodes
    Observe initial state s sk (arbitrary)
    Estimate empirical MDP }\mp@subsup{\widehat{M}}{k}{}=(\mathcal{S},\mathcal{A},\mp@subsup{\widehat{p}}{hk}{},\mp@subsup{\widehat{r}}{hk}{},H)\mathrm{ from }\mp@subsup{\mathcal{D}}{k}{
    Planning (by backward induction) for \pi}\pi
    for }h=1,\ldots,H\mathrm{ do
        Execute }\mp@subsup{a}{hk}{}=\mp@subsup{\pi}{hk}{}(\mp@subsup{s}{hk}{}
        Observe }\mp@subsup{r}{hk}{}\mathrm{ and }\mp@subsup{s}{h+1,k}{
        end
    Add trajectory ( }\mp@subsup{s}{hk}{},\mp@subsup{a}{hk}{},\mp@subsup{r}{hk}{}\mp@subsup{)}{h=1}{H}\mathrm{ to }\mp@subsup{\mathcal{D}}{k+1}{
end
```


Opt-RTDP: Incremental Planning

[Efroni et al., 2019]

```
Input: \(\mathcal{S}, \mathcal{A} \frac{\pi n}{n, p n}\)
Initialize \(V_{h 0}(s)=H-(h-1)\) for all \(s \in \mathcal{S}\) and \(h=[H], \mathcal{D}_{1}=\emptyset\)
for \(k=1, \ldots, K\) do // episodes
    Observe initial state \(s_{1 k}\) (arbitrary)
    Estimate empirical MDP \(\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{h k}, \widehat{r}_{h k}, H\right)\) from \(\mathcal{D}_{k}\)
    Planaing (by backward induction) for - Thn
    for \(h=1, \ldots, H\) do
    Build optimistic estimate of \(Q\left(s_{h k}, a\right)\) for all \(a \in \mathcal{A}\)
                                    \(Q \leftarrow\) using \(\widehat{p}_{h k}, \widehat{r}_{h k}, V_{h+1, k-1}\)
            Set \(V_{h k}\left(s_{h k}\right)=\min \left\{V_{h, k-1}\left(s_{h k}\right), \max _{a^{\prime} \in \mathcal{A}} Q\left(s_{h k}, a^{\prime}\right)\right\}\)
            Execute \(a_{h k}=\pi_{h k}\left(s_{h k}\right)=\arg \max _{a \in \mathcal{A}} Q\left(s_{h k}, a\right)\)
            Observe \(r_{h k}\) and \(s_{h+1, k}\)
    end
    Add trajectory \(\left(s_{h k}, a_{h k}, r_{h k}\right)_{h=1}^{H}\) to \(\mathcal{D}_{k+1}\)
end

\section*{Opt-RTDP: Incremental Planning}
[Efroni et al., 2019]
```

Input: $\mathcal{S}, \mathcal{A} \not \pi_{n, p n}$
Initialize $V_{h 0}(s)=H-(h-1)$ for all $s \in \mathcal{S}$ and $h=[H], \mathcal{D}_{1}=\emptyset$
for $k=1, \ldots, K$ do // episodes
Observe initial state $s_{1 k}$ (arbitrary)
Estimate empirical MDP $\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{h k}, \widehat{r}_{h k}, H\right)$ from \mathcal{D}_{k}
Plannaing (by backward induction) for π Thk
for $h=1, \ldots, H$ do
Build optimistic estimate of $Q\left(s_{h k}, a\right)$ for all $a \in \mathcal{A}$
$Q \leftarrow$ using $\widehat{p}_{h k}, \widehat{r}_{h k}, V_{h+1, k-1}$
Set $V_{h k}\left(s_{h k}\right)=\min \left\{V_{h, k-1}\left(s_{h k}\right), \max _{a^{\prime} \in \mathcal{A}} Q\left(s_{h k}, a^{\prime}\right)\right\}$
Next stage but previous episode!
Execute $a_{h k}=\pi_{h k}\left(s_{h k}\right)=\arg \max _{a \in \mathcal{A}} Q\left(s_{h k}, a\right)$
Observe $r_{h k}$ and $s_{h+1, k}$
end
Add trajectory $\left(s_{h k}, a_{h k}, r_{h k}\right)_{h=1}^{H}$ to \mathcal{D}_{k+1}
end
Optimism + RTDP

```

\section*{Opt-RTDP: Properties}

Non-Increasing Estimates
\[
V_{h k}(s) \leq V_{h, k-1}(s)
\]
how?
- Optimistic initialization: \(V_{h 0}(s)=H-(h-1)\)
- Clipping:
\[
V_{h k}\left(s_{h k}\right)=\min \left\{V_{h, k-1}\left(s_{h k}\right), \max _{a^{\prime} \in \mathcal{A}} Q\left(s_{h k}, a^{\prime}\right)\right\}
\]

\section*{Opt-RTDP: Properties}

Optimistic Estimates
\[
V_{h k}(s) \geq V_{h}^{\star}(s)
\]
how?
- Optimistic initialization: \(V_{h 0}(s)=H-(h-1)\)
- Optimistic update

\section*{Opt-RTDP: Properties}

\section*{Optimistic Estimates}
\[
V_{h k}(s) \geq V_{h}^{\star}(s)
\]
how?
- Optimistic initialization: \(V_{h 0}(s)=H-(h-1)\)
- Optimistic update

Example. UCRL2-like step
\[
Q\left(s_{h k}, a\right)=\max _{r \in B_{h k}^{r}\left(s_{h k}, a\right)} r\left(s_{h k}, a\right)+\max _{p \in B_{h k}^{\gamma}\left(s_{h k}, a\right)} \mathbb{E}_{s^{\prime} \sim p\left(\cdot \mid s_{h k}, a\right)}\left[V_{h+1, k-1}\left(s^{\prime}\right)\right]
\]
- \(V_{h+1, k-1}\) is one episode behind but optimistic
- Then \(Q\) is optimistic!

\section*{Theorem (Thm. 8 of Efroni et al. [2019])}

For any tabular MDP with stationary transitions, UCRL2-GP (Opt-RTDP based on UCRL2 with Hoeffding bounds), with high-probability, suffers a regret
\[
R\left(K, M^{\star}, \mathrm{UCRL} 2-\mathrm{GP}\right)=\widetilde{\mathcal{O}}\left(H S \sqrt{A T}+H^{2} S^{3 / 2} A\right)
\]
- Same regret as UCRL2-CH
- Computationally more efficient

Time: \(\mathcal{O}(S A)\) per step, total runtime \(\mathcal{O}(H S A K)\)
\(\leftrightarrow\) can be adapted to any algorithm (e.g.,UCBVI, EULER)

\section*{UCRL2-GP: RiverSwim}

\section*{Hoeffding}
\[
\begin{aligned}
b_{h k}^{r}(s, a) & =r_{\max } \sqrt{\frac{L}{N}} \\
b_{h k}^{p}(s, a) & =\sqrt{\frac{S L}{N}}
\end{aligned}
\]

\section*{Bernstein}
\(b_{h k}^{r}(s, a)=\sqrt{\frac{L \widehat{\mathbb{V}}\left(\widehat{r}_{h k}\right)}{N}}+r_{\max } \frac{L}{N}\)
\(b_{h k}^{p}(s, a)=\sqrt{\frac{L \widehat{\mathbb{V}}\left(\widehat{p}_{h k}\right)}{N}}+\frac{L}{N}\)
\(N=N_{h k}(s, a) \vee 1\)
\(L=\log (S A N / \delta)\)


\section*{UCRL2-GP: RiverSwim}

\section*{Hoeffding}
\[
\begin{aligned}
b_{h k}^{r}(s, a) & =r_{\max } \sqrt{\frac{L}{N}} \\
b_{h k}^{p}(s, a) & =\sqrt{\frac{S L}{N}}
\end{aligned}
\]

\section*{Bernstein}
\(b_{h k}^{r}(s, a)=\sqrt{\frac{L \widehat{\mathbb{V}}\left(\widehat{r}_{h k}\right)}{N}}+r_{\max } \frac{L}{N}\)
\(b_{h k}^{p}(s, a)=\sqrt{\frac{L \widehat{\mathbb{V}}\left(\widehat{p}_{h k}\right)}{N}}+\frac{L}{N}\)
\(N=N_{h k}(s, a) \vee 1\)
\(L=\log (S A N / \delta)\)


\section*{Tabular MDPs: Outline}

1 Tabular Model-Based
- Randomized

\section*{2 Tabular Model-Free Algorithms}

\section*{Posterior Sampling (PS)}
a.k.a. Thompson Sampling [Thompson, 1933]

Keep Bayesian posterior for the unknown MDP
\(\leftrightarrow\) A sample from the posterior is used as an estimate of the unknown MDP

\section*{Exploration}

Few samples \(\Longrightarrow\) uncertainty in the estimate

More samples \(\Longrightarrow\) posterior concentrates on the true MDP

> Exploitation

\section*{Set of MDPs}

\section*{Posterior} distribution \(\mu_{t}\)

\section*{History: PS for Regret Minimization}

Tabular MDPs
FH: finite-horizon


\section*{Bayesian Regret}
\[
R^{B}\left(K, \mu_{1}, \mathfrak{A}\right)=\mathbb{E}_{M^{\star} \sim \mu_{1}}[\underbrace{\bar{R}\left(K, M^{\star}, \mathfrak{A}\right)}_{:=\mathbb{E}\left[R\left(K, M^{\star}, \mathfrak{A}\right)\right]}]=\mathbb{E}_{M^{\star}}\left[\sum_{k=1}^{K} V_{1, M^{\star}}^{\star}\left(s_{1 k}\right)-V_{1, M^{\star}}^{\pi_{k}}\left(s_{1 k}\right)\right]
\]

\section*{Posterior Sampling}
[Osband and Roy, 2017]
```

Input: $\mathcal{S}, \mathcal{A},{ }_{h}, p_{n}$, prior μ_{1}
Initialize $\mathcal{D}_{1}=\emptyset$
for $k=1, \ldots, K$ do // episodes
Observe initial state $s_{1 k}$ (arbitrary)
Sample $M_{k} \sim \mu_{k}\left(\cdot \mid \mathcal{D}_{k}\right)$
Compute
$\pi_{k} \in \underset{\pi}{\arg \max }\left\{V_{1, M_{k}}^{\pi}\right\}$
for $h=1, \ldots, H$ do
Execute $a_{h k}=\pi_{h k}\left(s_{h k}\right)$
Observe $r_{h k}$ and $s_{h+1, k}$
end
Add trajectory $\left(s_{h k}, a_{h k}, r_{h k}\right)_{h=1}^{H}$ to \mathcal{D}_{k+1}
end

```

\section*{Posterior Sampling}
[Osband and Roy, 2017]

Input: \(\mathcal{S}, \mathcal{A},{ }_{n}\), prior \(\mu_{1}\)
Initialize \(\mathcal{D}_{1}=\emptyset\)
for \(k=1, \ldots, K\) do // episodes
Observe initial state \(s_{1 k}\) (arbitrary)
Sample \(M_{k} \sim \mu_{k}\left(\cdot \mid \mathcal{D}_{k}\right)\)
Compute
\[
\pi_{k} \in \underset{\pi}{\arg \max _{\pi}\left\{V_{1, M_{k}}^{\pi}\right\}, ~}
\]
for \(h=1, \ldots, H\) do
Execute \(a_{h k}=\pi_{h k}\left(s_{h k}\right)\)
Observe \(r_{h k}\) and \(s_{h+1, k}\)
end
Add trajectory \(\left(s_{h k}, a_{h k}, r_{h k}\right)_{h=1}^{H}\) to \(\mathcal{D}_{k+1}\)
end

Prior distribution:
\[
\forall \Theta, \quad \mathbb{P}\left(M^{*} \in \Theta\right)=\mu_{1}(\Theta)
\]

Posterior distribution:
\[
\forall \Theta, \quad \mathbb{P}\left(M^{*} \in \Theta \mid \mathcal{D}_{k}, \mu_{1}\right)=\mu_{k}(\Theta)
\]

Priors
- Dirichlet (transitions)
- Beta, Normal-Gamma, etc. (rewards)

\section*{Model Update with Dirichlet Priors}

A assume \(r\) is known
\[
\underbrace{\left\{\mu_{t},\left(s_{t}, a_{t}, s_{t+1}\right)\right\}}_{\sim H_{t}} \mapsto \mu_{t+1}
\]

\section*{Model Update with Dirichlet Priors}

A assume \(r\) is known
\[
\underbrace{\left\{\mu_{t},\left(s_{t}, a_{t}, s_{t+1}\right)\right\}}_{\sim H_{t}} \mapsto \mu_{t+1}
\]
- \(\mu_{t}(s, a)=\operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{S}\right)\) on \(p(\cdot \mid s, a)\)
- Observe \(s_{t+1} \sim p\left(\cdot \mid s_{t}, a_{t}\right)\) (outcome of a multivariate Bernoulli) such that \(s_{t+1}=i\). The Bayesian posterior is
\[
\mu_{t+1}(s, a)=\operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{i}+1, \ldots, \alpha_{S}\right)
\]
- Posterior mean vector \(\widehat{p}_{t+1}\left(s_{i} \mid s, a\right)=\frac{\alpha_{i}}{n}\)
- Variance bounded by \(\frac{1}{n}\)
\[
n=\sum_{i=1}^{S} \alpha_{i}
\]

\section*{Posterior Sampling is Usually Better}

[Chapelle and Li, 2011]


Finite horizon RL
[Osband and Roy, 2017]

\section*{PSRL: Regret}

\section*{Theorem (Osband and Roy [2017] revisited)}

For any prior \(\mu_{1}\) with any independent Dirichlet prior over stationary transitions, the Bayesian regret of PSRL is bounded as
\[
R^{B}\left(K, \mu_{1}, P S R L\right)=\widetilde{\mathcal{O}}(H S \sqrt{A T})
\]
- Order optimal \(\sqrt{A T}\)
- \(\sqrt{H S}\) factor suboptimal
\[
\text { Lower-bound: } \quad \Omega(\sqrt{H S A T})
\]

\section*{PSRL: RiverSwim}


\section*{PSRL: RiverSwim}


\section*{Tabular Randomized Least-Squares Value Iteration (RLSVI)} [Russo, 2019]
```

Input: $\mathcal{S}, \mathcal{A}, H$
for $k=1, \ldots, K$ do // episodes
Observe initial state $s_{1 k}$ (arbitrary)
Run Tabular-RLSVI on \mathcal{D}_{k}
for $h=1, \ldots, H$ do
Execute $a_{h k}=\pi_{h k}\left(s_{h k}\right)=\arg \max _{a} \widehat{Q}_{h k}\left(s_{h k}, a\right)$
Observe $r_{h k}$ and $s_{h+1, k}$
end
Add trajectory $\left(s_{h k}, a_{h k}, r_{h k}\right)_{h=1}^{H}$ to \mathcal{D}_{k+1}
end

```
* Not necessary to store all the data. Updates can be done incrementally

\section*{Tabular-RLSVI}

Input: Dataset \(\mathcal{D}_{k}=\left(s_{h i}, a_{h i}, r_{h i}\right)_{h=1, i=1}^{H, k}\)
Estimate empirical MDP \(\widehat{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{h}, \widehat{r}_{h}, H\right)\)
\[
\begin{aligned}
\widehat{p}_{h k}\left(s^{\prime} \mid s, a\right) & =\frac{1}{N_{h k}(s, a)} \sum_{i=1}^{k-1} \mathbb{1}\left(\left(s_{h i}, a_{h i}, s_{h+1, i}\right)=\left(s, a, s^{\prime}\right)\right), \\
\widehat{r}_{h k}(s, a) & =\frac{1}{N_{h k}(s, a)} \sum_{i=1}^{k-1} r_{h i} \cdot \mathbb{1}\left(\left(s_{h i}, a_{h i}\right)=(s, a)\right)
\end{aligned}
\]
for \(h=H, \ldots, 1\) do \(/ /\) backward induction
\(\quad\) Sample \(\xi_{h k} \sim \mathcal{N}\left(0, \sigma_{h k}^{2} I\right)\)
\(\bar{M}_{k}=\left(\mathcal{S}, \mathcal{A}, \widehat{p}_{h k}, \widehat{r}_{h k}+\xi_{h k}, H\right)\)
Compute
\[
\forall(s, a) \in \mathcal{S} \times \mathcal{A}, \quad \widehat{Q}_{h k}(s, a)=\widehat{r}_{h k}(s, a)+\xi_{h k}(s, a)+\sum_{s^{\prime} \in \mathcal{S}} \widehat{p}_{h k}\left(s^{\prime} \mid s, a\right) \widehat{V}_{h+1, k}\left(s^{\prime}\right)
\]
end
return \(\left\{\widehat{Q}_{h k}\right\}_{h=1}^{H}\)

\section*{Tabular-RLSVI: Frequentist Regret}

\section*{Theorem (Russo [2019])}

For any tabular MDP with non-stationary transitions, Tab-RLSVI with
\[
\sigma_{h k}(s, a)=\widetilde{\mathcal{O}}\left(\sqrt{\frac{S H^{3}}{N_{h k}(s, a)+1}}\right)
\]
suffers with high probability a frequentist regret
\[
R\left(K, M^{\star}, \text { Tab-RLSVI }\right)=\widetilde{\mathcal{O}}\left(H^{5 / 2} S^{3 / 2} \sqrt{A T}\right)
\]
- Order optimal \(\sqrt{A T}\)
- \(H^{3 / 2} S\) worse than the lower-bound \(\Omega(H \sqrt{S A T})\)

Analysis can be improved!

\section*{Tab-RLVSI \(_{\sigma}:\) RiverSwim}


\section*{Tab-RLVSI \({ }_{\sigma}:\) RiverSwim}
\[
\begin{aligned}
& \sigma_{1} \text { (theory) } \\
& \sigma_{h}(s, a)=\frac{1}{4} \sqrt{\frac{(H-h)^{3} S L}{N}}
\end{aligned}
\]
\[
\sigma_{2}
\]
\[
\sigma_{h}(s, a)=\frac{1}{4} \sqrt{\frac{(H-h)^{2} L}{N}}
\]
\(\sigma_{3}\)
\[
\sigma_{h}(s, a)=\frac{1}{4} \sqrt{\frac{L}{N}}
\]
\[
\begin{aligned}
& N=N_{h k}(s, a) \vee 1 \\
& L=\log (S A N / \delta)
\end{aligned}
\]


\section*{Tabular MDPs: Outline}

1 Tabular Model-Based
- Optimistic
- Randomized

2 Tabular Model-Free Algorithms

\section*{Model-Based Issues}

\section*{Complexity}
- Space \(O\left(H S^{2} A\right)\)
\[
\text { nonstationary model } \Longrightarrow H(\underbrace{S^{2} A}_{\text {transitions }}+\underbrace{S A}_{\text {rewards }})
\]
- Time \(O(K \underbrace{H S^{2} A}_{\text {planning by } V \text { vI }})\)

\section*{Solutions}

1 Time complexity: incremental planning (e.g.,Opt-RTDP)

\section*{Model-Based Issues}

Complexity
- Space \(O\left(H S^{2} A\right)\)
\[
\text { nonstationary model } \Longrightarrow H(\underbrace{S^{2} A}_{\text {transitions }}+\underbrace{S A}_{\text {rewards }})
\]
- Time \(O(K \underbrace{H S^{2} A}_{\text {planning by } V \text { vI }})\)

\section*{Solutions}

1 Time complexity: incremental planning (e.g.,Opt-RTDP)
2 Space complexity: avoid to estimate rewards and transitions

\section*{Model-Based Issues}

Complexity
- Space \(O\left(H S^{2} A\right)\)
\[
\text { nonstationary model } \Longrightarrow H(\underbrace{S^{2} A}_{\text {transitions }}+\underbrace{S A}_{\text {rewards }})
\]
- Time \(O(K \underbrace{H S^{2} A}_{\text {planning by } V \text { vI }})\)

\section*{Solutions}

1 Time complexity: incremental planning (e.g.,Opt-RTDP)
2 Space complexity: avoid to estimate rewards and transitions
\(\mathcal{B}\) Optimistic Q-learning (Opt-QL) Space: \(\mathcal{O}(H S A) \quad\) Time: \(\mathcal{O}(H A K)\)

\section*{River Swim: Q-learning w \(\ddagger\)-greedy Exploration}

■ \(\epsilon_{t}=1.0\)
■ \(\epsilon_{t}=0.5\)
\(\epsilon_{t}=\frac{\epsilon_{0}}{\left(N\left(s_{t}\right)-1000\right)^{2 / 3}}\)
\(\epsilon_{t}= \begin{cases}1.0 & t<6000 \\ \frac{\epsilon_{0}}{N\left(s_{t}\right)^{1 / 2}} & \text { otherwise }\end{cases}\)
\(\epsilon_{t}= \begin{cases}1.0 & t<7000 \\ \frac{\epsilon_{0}}{N\left(s_{t}\right)^{1 / 2}} & \text { otherwise }\end{cases}\)


Tuning the \(\epsilon\) schedule is difficult and problem dependent
\[
\text { Regret: } \Omega\left(\min \left\{T, A^{H / 2}\right\}\right)
\]

\section*{Optimistic Q-learning}
```

Input: S, A, 隹,Pn
Initialize Qh(s,a)=H-(h-1) and N}N(s,a)=0\mathrm{ for all (s,a) \& S }\times\mathcal{A}\mathrm{ and h=[H]
for }k=1,···,K\mathrm{ do // episodes
Observe initial state s}\mp@subsup{s}{1k}{}\mathrm{ (arbitrary)
for }h=1,···,H\mathrm{ do
Execute }\mp@subsup{a}{hk}{}=\mp@subsup{\pi}{hk}{}(\mp@subsup{s}{hk}{})=\operatorname{arg}\mp@subsup{\operatorname{max}}{a}{}\mp@subsup{\widehat{Q}}{h}{}(\mp@subsup{s}{hk}{},a
Observe }\mp@subsup{r}{hk}{}\mathrm{ and }\mp@subsup{s}{h+1,k}{
Set N
Update
Qh(shk, a}\mp@subsup{\mp@code{hk}}{}{)}=(1-\mp@subsup{\alpha}{t}{})\mp@subsup{Q}{h}{}(\mp@subsup{s}{hk}{},\mp@subsup{a}{hk}{})+\mp@subsup{\alpha}{t}{}(\mp@subsup{r}{hk}{}+\mp@subsup{\widehat{V}}{h+1}{}(\mp@subsup{s}{h+1,k}{})+\mp@subsup{\hat{b}}{t}{}
Set }\mp@subsup{\widehat{V}}{h}{}(\mp@subsup{s}{hk}{})=\operatorname{min}{H-(h-1),\mp@subsup{\operatorname{max}}{a\in\mathcal{A}}{}\mp@subsup{Q}{h}{}(\mp@subsup{s}{hk}{},a)
end
end

```

\section*{Step size \(\alpha_{t}\)}

Qlearning uses \(\alpha_{t}\) of
\[
O(1 / t) \quad \text { or } \quad O(1 / \sqrt{t})
\]
with \(t=N_{h k}(s, a)\)

Opt-QL
\[
\alpha_{t}=\frac{H+1}{H+t}
\]

\section*{Step size \(\alpha_{t}\)}

\[
{ }^{*} k_{i}=\left\{k: N_{h k}(s, a)=i\right\}
\]

\section*{Step size \(\alpha_{t}\)}

Recursive Q-learning update \(\left(t=N_{h k}(s, a)\right)\)
\[
\begin{array}{r}
Q_{h k}(s, a)=\mathbb{1}(t=0) H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(r_{k_{i}}+\widehat{V}_{h+1, k_{i}}\left(s_{h+1, k_{i}}\right)+b_{i}\right) \\
\text { with } \alpha_{t}^{i}=\alpha_{i} \prod_{j=i+1}^{t}\left(1-\alpha_{j}\right)
\end{array}
\]

Idea: favoring later updates
- last \(1 / H\) fraction of samples of \((s, a)\) have non-negligible weights
- \(1-1 / H\) is forgotten
\[
{ }^{*} k_{i}=\left\{k: N_{h k}(s, a)=i\right\}
\]

\section*{Step size \(\alpha_{t}\)}

\section*{Optimistic initialization}

Recursive Q-learning update \(\left(t \neq N_{h k}(s, a)\right.\) )

> Weighted Average of bootstrapped values
\[
\begin{array}{r}
Q_{h k}(s, a)=\mathbb{1}(t=0) H+\sum_{i=1}^{t} \alpha_{t}^{i}\left(r_{k_{i}}+\widehat{V}_{h+1, k_{i}}\left(s_{h+1, k_{i}}\right)+b_{i}\right) \\
\text { with } \alpha_{t}^{i}=\alpha_{i} \prod_{j=i+1}^{t}\left(1-\alpha_{j}\right)
\end{array}
\]

Example. \(H=10\) and assume \(t=N_{h k}(s, a)=1000\)

\[
* k_{i}=\left\{k: N_{h k}(s, a)=i\right\}
\]

\section*{Exploration Bonus \(b_{t}\)}

Let \(t=N_{h k}(s, a)\)
\[
\left|\sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h+1}^{\star}\left(s_{h+1, k_{i}}\right)-\mathbb{E}_{s^{\prime} \mid s, a}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right)\right| \leq \underbrace{c \sqrt{\frac{H^{3} \log (S A T / \delta)}{t}}}_{:=b_{t}}
\]

Note that \(\sum_{i=1}^{t} \alpha_{t}^{i}=1\).

\section*{Opt-Q-learning: Regret}

\section*{Theorem (Jin et al., 2018])}

For any tabular MDP with non-stationary transitions, Opt-QL with Hoeffding inequalities \(\left(b_{t}=\widetilde{\mathcal{O}}\left(\sqrt{H^{3} / t}\right)\right)\), with high probability, suffers a regret
\[
R\left(K, M^{\star}, \mathrm{Opt-QL}\right)=\widetilde{\mathcal{O}}\left(H^{2} \sqrt{S A T}+H^{2} S A\right)
\]
- Order optimal \(\sqrt{S A T}\)
- \(H\) factor worse than the lower-bound \(\Omega(H \sqrt{S A T})\)
- \(\sqrt{H}\) factor worse than model-based with Hoeffding inequalities UCBVI-CH for non-stationary \(p_{h}\) suffers \(\widetilde{\mathcal{O}}\left(H^{3 / 2} \sqrt{S A T}\right)\)
- but better second-order terms
- The bound does not improve in stationary MDPs (i.e., \(p_{1}=\ldots=p_{H}\) )

\section*{Opt-Qlearning: Example}


\section*{Refined Confidence Intervals}

■ Opt-QL with Bernstein-Freedman bounds (instead of Hoeffding/Weissman):
\[
R(K)=\widetilde{\mathcal{O}}\left(H^{3 / 2} \sqrt{S A T}+\sqrt{H^{9} S^{3} A^{3}}\right)
\]
\& Still not matching the lower-bound!
\(\sqrt{H}\) worse than model-based (e.g.,UCBVI-BF)

\section*{Open Questions}

11 prove frequentist regret for PSRL
2 whether the gap between the regret of model-based and model-free should exist?
3 which algorithm is better in practice?

Yasin Abbasi-Yadkori and Csaba Szepesvári. Bayesian optimal control of smoothly parameterized systems. In UAI, pages 1-11. AUAI Press, 2015.
Rajeev Agrawal. Adaptive control of markov chains under the weak accessibility. In 29th IEEE Conference on Decision and Control, pages 1426-1431. IEEE, 1990.
Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret bounds. In NIPS, pages 1184-1194, 2017.
Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted reinforcement learning. In NIPS, pages 49-56. MIT Press, 2006.
Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 263-272. PMLR, 2017.
Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs. In UAI, pages 35-42. AUAI Press, 2009.
Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using real-time dynamic programming. Artif. Intell., 72(1-2):81-138, 1995.
Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2249-2257. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf.
Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for model-based reinforcement learning with greedy policies. In NeurIPS, pages 12203-12213, 2019.
Sarah Filippi, Olivier Cappé, and Aurélien Garivier. Optimism in reinforcement learning and kullback-leibler divergence. 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 115-122, 2010.

Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Near optimal exploration-exploitation in non-communicating markov decision processes. In NeurIPS, pages 2998-3008, 2018a.
Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-exploitation in reinforcement learning. In ICML, Proceedings of Machine Learning Research. PMLR, 2018b.
Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Improved analysis of UCRL2B, 2019. URL https://rlgammazero.github.io/docs/ucrl2b_improved.pdf.
Aditya Gopalan and Shie Mannor. Thompson sampling for learning parameterized markov decision processes. In COLT, volume 40 of JMLR Workshop and Conference Proceedings, pages 861-898. JMLR.org, 2015.
Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, 1963. URL http://www.jstor.org/stable/2282952.
Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research, 11:1563-1600, 2010.
Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably efficient? In NeurIPS, pages 4868-4878, 2018.
Sham Kakade, Mengdi Wang, and Lin F. Yang. Variance reduction methods for sublinear reinforcement learning. CoRR, abs/1802.09184, 2018.
Odalric-Ambrym Maillard, Timothy A. Mann, and Shie Mannor. How hard is my mdp?" the distribution-norm to the rescue". In NIPS, pages 1835-1843, 2014.
Ian Osband and Benjamin Van Roy. Posterior sampling for reinforcement learning without episodes. CoRR, abs/1608.02731, 2016.
Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement learning? In ICML, volume 70 of Proceedings of Machine Learning Research, pages 2701-2710. PMLR, 2017.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling. In NIPS, pages 3003-3011, 2013.
Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision processes: A thompson sampling approach. In NIPS, pages 1333-1342, 2017.
Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Exploration bonus for regret minimization in discrete and continuous average reward mdps. In NeurIPS, pages 4891-4900, 2019.
Jian Qian, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Concentration inequalities for multinoulli random variables. CoRR, abs/2001.11595, 2020.
Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In NeurIPS, pages 14410-14420, 2019.
Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for Markov decision processes. Journal of Computer and System Sciences, 74(8):1309-1331, 2008.
Malcolm Strens. A bayesian framework for reinforcement learning. In In Proceedings of the Seventeenth International Conference on Machine Learning, pages 943-950. ICML, 2000.
Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for undiscounted reinforcement learning in mdps. In ALT, volume 83 of Proceedings of Machine Learning Research, pages 770-805. PMLR, 2018.
Georgios Theocharous, Zheng Wen, Yasin Abbasi, and Nikos Vlassis. Scalar posterior sampling with applications. In NeurIPS, pages 7696-7704, 2018.
William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3-4):285-294, 1933.
Aristide C. Y. Tossou, Debabrota Basu, and Christos Dimitrakakis. Near-optimal optimistic reinforcement learning using empirical bernstein inequalities. CoRR, abs/1905.12425, 2019.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdú, and Marcelo J. Weinberger. Inequalities for the L1 deviation of the empirical distribution. 2003.

Andrea Zanette and Emma Brunskill. Problem dependent reinforcement learning bounds which can identify bandit structure in mdps. In ICML, volume 80 of JMLR Workshop and Conference Proceedings, pages 5732-5740. JMLR.org, 2018.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge using value function bounds. In ICML, volume 97 of Proceedings of Machine Learning Research, pages 7304-7312. PMLR, 2019.

Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement learning by evaluating the optimal bias function. In NeurlPS, pages 2823-2832, 2019.```

