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Markov Decision Process
[Puterman, 1994]

3

A finite-horizon Markov decision process (MDP) is a tuple M = 〈S,A, rh, ph, H〉

State space S

Action space A

Horizon H

Transition distribution ph(·|s, a) ∈ ∆(S), h = 1, . . . ,H

Reward distribution with expectation rh(s, a) ∈ [0, 1], h = 1, . . . ,H

An agent acts according to a time-variant policy

πh : S → A h = 1, . . . ,H

� In (contextual) bandit, actions do not influence the evolution of states
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Value Functions and Optimality
4

Value functions

Qπh(s, a) = rh(s, a) + E
[ H∑
l=h+1

rl(sl, πl(sl))

]
V πh (s) = Qπh(s, πh(s))

Optimality

Q?h(s, a) = sup
π
Qπh(s, a)

π?h(s) = arg max
a∈A

Q?h(s, a)

Remark : given rh(s, a) ∈ [0, 1], then Qh(s, a), Vh(s) ∈ [0, H − (h− 1)]
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Bellman Equations
5

Policy Bellman equation

Qπh(s, a) = rh(s, a) + Es′∼ph(·|s,a)
[
Qπh+1(s′, πh+1(s′))

]
= rh(s, a) + Es′∼ph(·|s,a)

[
V πh+1(s′)

]

Optimal Bellman equation

Q?h(s, a) = rh(s, a) + Es′∼ph(·|s,a)
[

max
a′∈A

Q?h+1(s′, a′)
]

= rh(s, a) + Es′∼ph(·|s,a)
[
V ?h+1(s′)

]
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Value Iteration (aka Backward Induction)
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Input: S, A, rh, ph
Set Q?

H+1(s, a) = 0 for all (s, a) ∈ S ×A

for h = H, . . . , 1 do
for (s, a) ∈ S ×A do

Compute

Q?
h(s, a) = rh(s, a) + Es′∼ph(·|s,a)

[
max
a′∈A

Q?
h+1(s

′, a′)
]

= rh(s, a) + Es′∼ph(·|s,a)

[
V ?
h+1(s

′)
]

end
end
return π?

h(s) = argmaxa∈AQ
?
h(s, a)
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Value Iteration (aka Backward Induction)
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Q?(s, a)

H

1

upper bound to Q?

1 2 3 4 5 6 7
horizon

Q?h(s, a) = max
a

{
rh(s, a) + Es′|s,a[V ?

h+1(s
′)]
}
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Online Learning Problem
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Input: S, A rh, ph
Initialize Qh1(s, a) = 0 for all (s, a) ∈ S ×A and h = 1, . . . , H, D1 = ∅

for k = 1, . . . ,K do // episodes
Define πk based on (Qhk)

H
h=1

Observe initial state s1k (arbitrary)
for h = 1, . . . , H do

Execute ahk = πhk(shk)
Observe rhk and sh+1,k

end
Add trajectory (shk, ahk, rhk)

H
h=1 to Dk+1

Compute (Qh,k+1)
H
h=1 from Dk+1

end
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Frequentist Regret 9

v-function V πk
1

V ?1,M?

K

H-step reward

R(K, M? , A ) =

K∑
k=1

(
V ?(s1k)− V πk (s1k)

)

� Let T = HK total number of steps executed in the environment
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Frequentist Regret 9

v-function V πk
1

V ?1,M?

K

H-step reward

regret R

R(K, M? , A ) =

K∑
k=1

(
V ?(s1k)− V πk (s1k)

)

� Let T = HK total number of steps executed in the environment

unknown true MDP
M? = 〈S,A, r, p,H〉 algorithm A = {πk}Kk=1

policy selected by A
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Alternative Models
10

Infinite-horizon undiscounted MDPs (average reward)
⇒ regret minimization

Infinite-horizon discounted MDPs
⇒ PAC-MDPs

N(M? , A ) =

∞∑
t=0

I
{
V πt( st ) ≤ V ?(st)− ε

}
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What is Wrong with Q-learning with ε-greedy?
11

ε-greedy strategy

ahk =

arg max
a∈A

Qhk(shk, a) w.p. 1− εhk,

U(A) otherwise.

Q-learning update

Qh,k+1(shk, ahk) = (1− αt)Qhk(shk, ahk) + αt
(
rhk + max

a′∈A
Qh+1,k(sh+1,k, a

′)
)

, The exploration strategy relies on biased estimates Qhk
, Samples are used once
, Dithering effect: exploration is not effective in covering the state space
, Policy shift: the policy changes at each step
, Regret: Ω

(
min{T,AH/2}

)
[Jin et al., 2018]
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River Swim: Markov Decision Processes
Strehl and Littman [2008]

12
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S = {1, 2, 3, 4, 5, 6}, A = {L,R}
πL(s) = L, πR(s) = R
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River Swim: Q-learning w\ ε-greedy Exploration
13

εt = 1.0

εt = 0.5

εt =
ε0

(N(st)− 1000)2/3

εt =

1.0 t < 6000
ε0

N(st)1/2
otherwise

εt =

1.0 t < 7000
ε0

N(st)1/2
otherwise

1 2 3 4 5 6

N1
N2 N3 N4 N5 N6

Tuning the ε schedule is difficult and problem dependent
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River Swim: Q-learning w\ ε-greedy Exploration
14

Main drawbacks of Q-learning with ε-greedy

ε-greedy performs undirected exploration

Inefficient use of samples

, Regret: Ω
(

min{T,AH/2}
)

Uncertainty-driven exploration-exploitation
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