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in Reinforcement Learning
Part 1 — Finite-Horizon MDPs
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RL Agent-Environment Interaction

. environment

action a; reward 7 state s;

Y

RL agent -

Website
https://rlgammazero.github.io
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Markov Decision Process
[Puterman, 1994]

A finite-horizon Markov decision process (MDP) is a tuple M = (S, A, rp, pn, H)

m State space S

Action space A

Horizon H

m Transition distribution py(|s,a) € A(S), h=1,...,H

m Reward distribution with expectation r,(s,a) € [0,1], h=1,...

An agent acts according to a time-variant policy

TS — A h=1,....H
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Markov Decision Process
[Puterman, 1994]

A finite-horizon Markov decision process (MDP) is a tuple M = (S, A, rp, pn, H)

m State space S

Action space A

Horizon H

m Transition distribution py(|s,a) € A(S), h=1,...,H

m Reward distribution with expectation r,(s,a) € [0,1], h=1,...,H

An agent acts according to a time-variant policy

TS — A h=1,....H

& In (contextual) bandit, actions do not influence the evolution of states
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Value Functions and Optimality

Value functions

Qi(s.0) = o) + |

H
=h+

=

7”1(51771(81))]

1
Vi (s) = Qp(s,mn(s))
Optimality
Qn(s,a) = sup Qj (s, a)

m,(s) = arg max Qj, (s, )
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Value Functions and Optimality

Value functions

H
Qils.0) = ri(s.0) +E| Y o m(on)]
l=h+1
Vii(s) = Qi(s, 7 (5)

Optimality
Qn(s,a) = sup Qj (s, a)

m,(s) = arg max Qj, (s, )

Remark: given rp,(s,a) € [0,1], then Qp(s,a), Va(s) € [0. H — (h — 1)]
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Bellman Equations

Policy Bellman equation
QZ (S’ a) =Th (87 a) + ]Es’NPh("s,a) [Q;Jrl(s/, 7Th+1(5/))]

=Th (Sv a’) + ]Es/wph(-\s,a) |:VIZT+1 (S/)‘|

Optimal Bellman equation
Qi (5,@) = ra(,0) + Eurmp, (fs.0) | max Q11 (5,0

= Th(S, (L) + ]Es/,\,ph(,‘s)a) [‘/}:+1(.8/)i|
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Value Iteration (aka Backward Induction)

Input: S, A, 71, pn
Set Q% 1(s,a) =0 for all (s,a) e S x A

for h =M, ..., 1 do

for (s,a) € S x Ado
Compute
Q(,@) = 71.(5,0) + Evrmy, (o | max Q11 (5', )]
=71(s,a) + Egrnp), (15,0) [V,,ﬁ 1(3/)]
end

end
return 7 (s) = arg max,c 4Q}, (s, a)
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Value Iteration (aka Backward Induction)

horizon

Qi (5 a) = max {r(s, 0) + Eyj, o[V ()]}
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Online Learning Problem

Input: S, A 7
Initialize Qp1(s,a) =0 for all (s,a) e Sx Aandh=1,...,H, D1 =0

fork=1,..., K do // episodes
Define 7, based on (Qn)fi—1
Observe initial state sy (arbitrary)

forh =1,..., H do
Execute anr = m,;,(shk)
Observe rpx and sp41,k
end

Add trajectory (shk,ahk, Thk)thl to 'Dk+1
Compute (Qh,kﬂ)f:l from D11

end

facebook Artificial Intelligence Research

Ghavamzadeh, Lazaric and Pirotta



Frequentist Regret

H-step reward Vi are

v-function V™

R(K, M*, i( (s1k) = V™ (Slk)>

k=1

& |et T = HK total number of steps executed in the environment
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Frequentist Regret

H-step reward Vi are

v-function V|™*

K

unknown true MDP

M* = (S, A,r,p, H) \ ﬁ algorithm 2 = {m }1,
K

RO, M, 20) = 37 (V¥ (o) = VT (s)
=1 \‘ policy selected by

& |et T = HK total number of steps executed in the environment
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Alternative Models

Infinite-horizon undiscounted MDPs (average reward)
= regret minimization

Infinite-horizon discounted MDPs
= PAC-MDPs

iﬂ{V’” (s <V*(st)—e}

t=0
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What is Wrong with Q-learning with e-greedy? h
B c-greedy strategy

arg max Qpk(spk,a) w.p. 1 — €pp,
app = acA

U(A) otherwise.
m Q-learning update

Qh k1 (Shie, ank) = (1 — ) Qni(Shie, ank) + o (Thi + max Qhi1,6(Shi1,,0))
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What is Wrong with Q-learning with e-greedy?

B c-greedy strategy

arg max Qpk(spk,a) w.p. 1 — €pp,
app = acA

U(A) otherwise.
m Q-learning update
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L) The exploration strategy relies on biased estimates Q.
) Samples are used once

) Dithering effect: exploration is not effective in covering the state space
) Policy shift: the policy changes at each step
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What is Wrong with Q-learning with e-greedy?

B c-greedy strategy

arg max Qpk(spk,a) w.p. 1 — €pp,
app = acA

U(A) otherwise.
m Q-learning update
Qh k1 (Shie, ank) = (1 — ) Qni(Shie, ank) + o (Thi + max Qhi1,6(Shi1,,0))

L) The exploration strategy relies on biased estimates Q.

) Samples are used once

) Dithering effect: exploration is not effective in covering the state space
) Policy shift: the policy changes at each step

) Regret: Q(min{T, AH/Q}) [Jin et al., 2018]
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River Swim: Markov Decision Processes
Strehl and Littman [2008]

4
r=0.01"__
1

n §={1,2,3,4,5,6}, A={L,R}
m7r(s) =L, mr(s) =R
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River Swim: Q-learning w\ e-greedy Exploration
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River Swim: Q-learning w\ e-greedy Exploration
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River Swim: Q-learning w\ e-greedy Exploration

me =10
m e =05

€0
H e =

(N(s¢) — 1000)2/3
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River Swim: Q-learning w\ e-greedy Exploration

me =10
m e =05

€0
H e =

(N(s¢) — 1000)2/3

1.0 t < 6000

€ = €0

W otherwise
St
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River Swim: Q-learning w\ e-greedy Exploration

meg=1.0
me =05

€0
&g =

(N(s¢) — 1000)2/3

1.0 t < 6000

&= ﬁ otherwise
St

1.0 t < 7000

me= ﬁ OtherWise
St
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River Swim: Q-learning w\ e-greedy Exploration
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Tuning the e schedule is difficult and problem dependent
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River Swim: Q-learning w\ e-greedy Exploration
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River Swim: Q-learning w\ e-greedy Exploration

Main drawbacks of Q-learning with e-greedy 3500 {
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Uncertainty-driven exploration-exploitation
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