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Reinforcement Learning
2

RL agent

environment

action at state streward rt

“Reinforcement learning is learning
how to map states to actions so as to
maximize a numerical reward signal in
an unknown and uncertain environment.

In the most interesting and challenging
cases, actions affect not only the immedi-
ate reward but also the next situation and
all subsequent rewards (delayed reward).

The agent is not told which actions to take
but it must discover which actions yield
the most reward by trying them (trial-and-
error).”

— Sutton and Barto [1998]
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Why This Tutorial?
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Superhuman performance

Mnih et al. [2015]

10 million frames

Beating world champion

Silver et al. [2016]

4.9 million games

Even best RL algorithms are very sample inefficient

Ghavamzadeh, Lazaric and Pirotta



Why This Tutorial?
3

Superhuman performance

Mnih et al. [2015]

10 million frames

Beating world champion

Silver et al. [2016]

4.9 million games

Even best RL algorithms are very sample inefficient

Ghavamzadeh, Lazaric and Pirotta



Why This Tutorial?
3

Superhuman performance

Mnih et al. [2015]
10 million frames

Beating world champion

Silver et al. [2016]
4.9 million games

Even best RL algorithms are very sample inefficient

Ghavamzadeh, Lazaric and Pirotta



Why This Tutorial?
3

Superhuman performance

Mnih et al. [2015]
10 million frames

Beating world champion

Silver et al. [2016]
4.9 million games

Even best RL algorithms are very sample inefficient

Ghavamzadeh, Lazaric and Pirotta



Why This Tutorial?
4

Better exploration may significantly improve the sample efficiency

*Optimism in face of uncertainty

Tang et al. [2017]

*Thompson sampling

Fortunato et al. [2018]

*inspired by
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Objective of the Tutorial
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Formalize the exploration-exploitation dilemma

Review exploration design principles (optimism and randomness) and
illustrate their theoretical guarantees

Review how design principles can be scaled up into DeepRL
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Organization 6

Part 1. The Exploration-Exploitation Dilemma in Finite-Horizon MDPs
ET (8:45am - 9:00am)

Part 2. Regret Minimization Algorithms in Tabular MDPs
ET (9:00am - 10:00am)

Part 3. Effective and Scalable Exploration in DeepRL
ET (10:00am - 11:45am with coffee)

Part 4. Regret Minimization Algorithms in Continuous MDPs
ET (11:45am - 12:20pm)

Website
https://rlgammazero.github.io
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